The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00597957" target="_blank" >RIV/68378289:_____/24:00597957 - isvavai.cz</a>
Výsledek na webu
<a href="https://angeo.copernicus.org/articles/42/371/2024/" target="_blank" >https://angeo.copernicus.org/articles/42/371/2024/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/angeo-42-371-2024" target="_blank" >10.5194/angeo-42-371-2024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Popis výsledku v původním jazyce
The magnetopause is the boundary between the interplanetary magnetic field and the terrestrial magnetic field. It is influenced by different solar-wind conditions, which lead to a change in the shape and location of the magnetopause. The interaction between the solar wind and the magnetosphere can be studied from in situ spacecraft observations. Many studies focus on the equatorial plane as this is where recent spacecraft constellations such as THEMIS or MMS operate. However, to fully capture the interaction, it is important to study the high-latitude regions as well. Since the Cluster spacecraft operate in a highly elliptical polar orbit, the spacecraft often pass through the magnetopause at high latitudes. This allows us to collect a dataset of high-latitude magnetopause crossings and to study magnetopause motion in this region, as well as deviations from established magnetopause models. We use multi-spacecraft analysis tools to investigate the direction of the magnetopause motion in the high latitudes and to compare the occurrence of crossings at different locations with the result in the equatorial plane. We find that the high-latitude magnetopause motion is generally consistent with previously reported values and seems to be more often associated with a closed magnetopause boundary. We show that, on average, the magnetopause moves faster inwards than outwards. Furthermore, the occurrence of magnetopause positions beyond those predicted by the model at high latitudes is found to be caused by the solar-wind parameters that are similar to those in the equatorial plane. Finally, we highlight the importance of the dipole tilt angle at high latitudes. Our results may be useful for the interpretation of plasma measurements from the upcoming SMILE mission as this spacecraft will also fly frequently through the high-latitude magnetopause.
Název v anglickém jazyce
The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Popis výsledku anglicky
The magnetopause is the boundary between the interplanetary magnetic field and the terrestrial magnetic field. It is influenced by different solar-wind conditions, which lead to a change in the shape and location of the magnetopause. The interaction between the solar wind and the magnetosphere can be studied from in situ spacecraft observations. Many studies focus on the equatorial plane as this is where recent spacecraft constellations such as THEMIS or MMS operate. However, to fully capture the interaction, it is important to study the high-latitude regions as well. Since the Cluster spacecraft operate in a highly elliptical polar orbit, the spacecraft often pass through the magnetopause at high latitudes. This allows us to collect a dataset of high-latitude magnetopause crossings and to study magnetopause motion in this region, as well as deviations from established magnetopause models. We use multi-spacecraft analysis tools to investigate the direction of the magnetopause motion in the high latitudes and to compare the occurrence of crossings at different locations with the result in the equatorial plane. We find that the high-latitude magnetopause motion is generally consistent with previously reported values and seems to be more often associated with a closed magnetopause boundary. We show that, on average, the magnetopause moves faster inwards than outwards. Furthermore, the occurrence of magnetopause positions beyond those predicted by the model at high latitudes is found to be caused by the solar-wind parameters that are similar to those in the equatorial plane. Finally, we highlight the importance of the dipole tilt angle at high latitudes. Our results may be useful for the interpretation of plasma measurements from the upcoming SMILE mission as this spacecraft will also fly frequently through the high-latitude magnetopause.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales Geophysicae
ISSN
0992-7689
e-ISSN
1432-0576
Svazek periodika
42
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
371-394
Kód UT WoS článku
001310262600001
EID výsledku v databázi Scopus
2-s2.0-85204234598