Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stability of limit cycles in autonomous nonlinear systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F14%3A00426389" target="_blank" >RIV/68378297:_____/14:00426389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s11012-014-9899-8" target="_blank" >http://link.springer.com/article/10.1007/s11012-014-9899-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11012-014-9899-8" target="_blank" >10.1007/s11012-014-9899-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stability of limit cycles in autonomous nonlinear systems

  • Popis výsledku v původním jazyce

    Periodical solutions or limit cycles (LC) comprise a significant family among the response types of nonlinear autonomous systems. Their identification and stability assessment is of a great importance during the analysis of an unknown system. A new analytical/iterative method of LC identification and portrait investigation was presented recently. The current study proposes a novel technique for their stability assessment. This strategy facilitates the distinction of stable and unstable LCs, thereby allowing the definition of attractive and repulsive response fields. A narrow toroidal domain is constructed around the LC, which is arithmetized by an orthogonal system that is positioned by tangential and normal vectors to the LC. The stability of the LC is investigated using the transformed differential system of the normal components of the response, which are functions of the coordinate along the LC trajectory. Exponential LC stability criteria are also proposed, which are based on the

  • Název v anglickém jazyce

    Stability of limit cycles in autonomous nonlinear systems

  • Popis výsledku anglicky

    Periodical solutions or limit cycles (LC) comprise a significant family among the response types of nonlinear autonomous systems. Their identification and stability assessment is of a great importance during the analysis of an unknown system. A new analytical/iterative method of LC identification and portrait investigation was presented recently. The current study proposes a novel technique for their stability assessment. This strategy facilitates the distinction of stable and unstable LCs, thereby allowing the definition of attractive and repulsive response fields. A narrow toroidal domain is constructed around the LC, which is arithmetized by an orthogonal system that is positioned by tangential and normal vectors to the LC. The stability of the LC is investigated using the transformed differential system of the normal components of the response, which are functions of the coordinate along the LC trajectory. Exponential LC stability criteria are also proposed, which are based on the

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JM - Inženýrské stavitelství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Meccanica

  • ISSN

    0025-6455

  • e-ISSN

  • Svazek periodika

    49

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    1929-1943

  • Kód UT WoS článku

    000339909600015

  • EID výsledku v databázi Scopus