Dynamic stability of a vertically excited non-linear continuous system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F15%3A00442141" target="_blank" >RIV/68378297:_____/15:00442141 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.compstruc.2015.01.001" target="_blank" >http://dx.doi.org/10.1016/j.compstruc.2015.01.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2015.01.001" target="_blank" >10.1016/j.compstruc.2015.01.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic stability of a vertically excited non-linear continuous system
Popis výsledku v původním jazyce
Easily deformable tall structures exposed to a strong vertical component of an excitation are endangered by auto-parametric resonance effect. This non-linear dynamic process in a post-critical regime might contribute to various damages caused by a kinematic excitation. Vertical and horizontal response components are independent on the linear level. However their interaction takes place due to non-linear terms in post-critical regime. Two generally different types of the post-critical regimes are presented: (i) post-critical state with possible recovery and (ii) exponentially rising horizontal response leading to a collapse. A special attention is paid to processes of transition from semi-trivial to post-critical state in case of time limited excitationperiod as it concerns the seismic processes. Solution method combining analytical and numerical approaches is developed and used. Its applicability and shortcomings are commented. A few hints for engineering applications are given.
Název v anglickém jazyce
Dynamic stability of a vertically excited non-linear continuous system
Popis výsledku anglicky
Easily deformable tall structures exposed to a strong vertical component of an excitation are endangered by auto-parametric resonance effect. This non-linear dynamic process in a post-critical regime might contribute to various damages caused by a kinematic excitation. Vertical and horizontal response components are independent on the linear level. However their interaction takes place due to non-linear terms in post-critical regime. Two generally different types of the post-critical regimes are presented: (i) post-critical state with possible recovery and (ii) exponentially rising horizontal response leading to a collapse. A special attention is paid to processes of transition from semi-trivial to post-critical state in case of time limited excitationperiod as it concerns the seismic processes. Solution method combining analytical and numerical approaches is developed and used. Its applicability and shortcomings are commented. A few hints for engineering applications are given.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-01035S" target="_blank" >GA15-01035S: Dynamická stabilita a post-kritické procesy v nekonzervativních a neholonomních stochastických soustavách s interakcemi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Structures
ISSN
0045-7949
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
106-114
Kód UT WoS článku
000356738400010
EID výsledku v databázi Scopus
2-s2.0-84930274023