Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F16%3A00462953" target="_blank" >RIV/68378297:_____/16:00462953 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.rsc.org/en/Content/ArticleLanding/2016/CE/c6ce01202g#!divAbstract" target="_blank" >http://pubs.rsc.org/en/Content/ArticleLanding/2016/CE/c6ce01202g#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6ce01202g" target="_blank" >10.1039/c6ce01202g</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation
Popis výsledku v původním jazyce
Nanolimes are alcohol dispersions of colloidal Ca(OH)2 nanoparticles used as novel nanomaterials for the conservation of cultural heritage. Upon exposure to atmospheric CO2 at room T, and in the presence of H2O, they undergo carbonation forming CaCO3 cement which consolidates decayed porous materials such as stone or mural paintings. Despite extensive research on the synthesis and applications of nanolimes, little is known about the mechanisms and kinetics of the formation and transformation of metastable and stable calcium carbonate phases and their effects on the treatment efficacy. This is a strong handicap to their effective and widespread application. Here we show that the carbonation of nanolimes in humid air at room T involves the initial formation of amorphous calcium carbonate (ACC) and its transformation into metastable vaterite (and minor aragonite) via a dissolution-precipitation process, followed by non-classical nanoparticle-mediated crystal growth. Subsequently, vaterite (and aragonite) partially dissolves and stable calcite precipitates. All these phase transformations follow first order kinetics, where the rate controlling step is the amount of undissolved parent phase. We unambiguously demonstrate that precipitation of vaterite (up to ∼35 wt%) and aragonite (∼5 wt%) after ACC (up to ∼24 wt%) is favored by the alcohol adsorbed on Ca(OH)2 nanoparticles undergoing carbonation. Although it is known that vaterite formation limits consolidation, the fast kinetics of the solvent-mediated vaterite-calcite transformation (72% conversion in ten days) ensures that, in the short-term, the almost full consolidation potential of nanolimes can be achieved. Finally, the mechanistic and kinetic commonalities between nanolime carbonation and biomineralization/biomimetic synthesis of CaCO3 underline that the observed multistep crystallization and non-classical crystal growth might be general and applicable for the rational design of novel CaCO3 materials.
Název v anglickém jazyce
Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation
Popis výsledku anglicky
Nanolimes are alcohol dispersions of colloidal Ca(OH)2 nanoparticles used as novel nanomaterials for the conservation of cultural heritage. Upon exposure to atmospheric CO2 at room T, and in the presence of H2O, they undergo carbonation forming CaCO3 cement which consolidates decayed porous materials such as stone or mural paintings. Despite extensive research on the synthesis and applications of nanolimes, little is known about the mechanisms and kinetics of the formation and transformation of metastable and stable calcium carbonate phases and their effects on the treatment efficacy. This is a strong handicap to their effective and widespread application. Here we show that the carbonation of nanolimes in humid air at room T involves the initial formation of amorphous calcium carbonate (ACC) and its transformation into metastable vaterite (and minor aragonite) via a dissolution-precipitation process, followed by non-classical nanoparticle-mediated crystal growth. Subsequently, vaterite (and aragonite) partially dissolves and stable calcite precipitates. All these phase transformations follow first order kinetics, where the rate controlling step is the amount of undissolved parent phase. We unambiguously demonstrate that precipitation of vaterite (up to ∼35 wt%) and aragonite (∼5 wt%) after ACC (up to ∼24 wt%) is favored by the alcohol adsorbed on Ca(OH)2 nanoparticles undergoing carbonation. Although it is known that vaterite formation limits consolidation, the fast kinetics of the solvent-mediated vaterite-calcite transformation (72% conversion in ten days) ensures that, in the short-term, the almost full consolidation potential of nanolimes can be achieved. Finally, the mechanistic and kinetic commonalities between nanolime carbonation and biomineralization/biomimetic synthesis of CaCO3 underline that the observed multistep crystallization and non-classical crystal growth might be general and applicable for the rational design of novel CaCO3 materials.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AL - Umění, architektura, kulturní dědictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CrystEngComm
ISSN
1466-8033
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
35
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
6594-6607
Kód UT WoS článku
000382682700006
EID výsledku v databázi Scopus
2-s2.0-84984813315