Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F16%3A00465305" target="_blank" >RIV/68378297:_____/16:00465305 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177" target="_blank" >http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/744/1/012177" target="_blank" >10.1088/1742-6596/744/1/012177</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
Popis výsledku v původním jazyce
The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only.nSo the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.
Název v anglickém jazyce
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
Popis výsledku anglicky
The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only.nSo the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics: Conference Series
ISSN
1742-6588
e-ISSN
—
Svazek periodika
744
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84994175648