Evolutionary analysis of Fokker-Planck equation using multi-dimensional Finite Element Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F17%3A00478703" target="_blank" >RIV/68378297:_____/17:00478703 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1877705817334471" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1877705817334471</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.09.033" target="_blank" >https://doi.org/10.1016/j.proeng.2017.09.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary analysis of Fokker-Planck equation using multi-dimensional Finite Element Method
Popis výsledku v původním jazyce
Response characteristics, stability and other problems of non-linear dynamic systems under randomly variable loading are mostly analyzed by means of Fokker-Planck equation. However, possibilities of its analytical investigation are very limited and rather restricted to steady state problems only. Thus a number of non-conventional problems are out of effect of this popular tool. So the Finite Element Method reveals to be a powerful or sometimes the only applicable approach for analysis of non-stationary problems, as for instance quasi-periodic response, post-critical states, unstable states in time limited period, special configuration of boundary conditions, etc. However, a number of specific problems must be overcome. They follow predominantly from the large multi-dimensionality of the Fokker-Planck equation, shape of the definition domain and special requirements on the nature of the solution form, which is out of a common practice of Finite Element employment. In particular: (i) selection of the element type, (ii) development of new original algorithms for multi-dimensional element mesh generation and (iii) working out the original procedures for governing differential and algebraic systems assembling and their subsequent solution. A couple of illustrative examples dealing with SDOF and TDOF systems under random excitation of additive and multiplicative types are presented.
Název v anglickém jazyce
Evolutionary analysis of Fokker-Planck equation using multi-dimensional Finite Element Method
Popis výsledku anglicky
Response characteristics, stability and other problems of non-linear dynamic systems under randomly variable loading are mostly analyzed by means of Fokker-Planck equation. However, possibilities of its analytical investigation are very limited and rather restricted to steady state problems only. Thus a number of non-conventional problems are out of effect of this popular tool. So the Finite Element Method reveals to be a powerful or sometimes the only applicable approach for analysis of non-stationary problems, as for instance quasi-periodic response, post-critical states, unstable states in time limited period, special configuration of boundary conditions, etc. However, a number of specific problems must be overcome. They follow predominantly from the large multi-dimensionality of the Fokker-Planck equation, shape of the definition domain and special requirements on the nature of the solution form, which is out of a common practice of Finite Element employment. In particular: (i) selection of the element type, (ii) development of new original algorithms for multi-dimensional element mesh generation and (iii) working out the original procedures for governing differential and algebraic systems assembling and their subsequent solution. A couple of illustrative examples dealing with SDOF and TDOF systems under random excitation of additive and multiplicative types are presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-01035S" target="_blank" >GA15-01035S: Dynamická stabilita a post-kritické procesy v nekonzervativních a neholonomních stochastických soustavách s interakcemi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Engineering
ISBN
—
ISSN
1877-7058
e-ISSN
—
Počet stran výsledku
6
Strana od-do
735-740
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Řím
Datum konání akce
10. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000422868900116