Limit trajectories in a non-holonomic system of a ball moving inside a spherical cavity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00505748" target="_blank" >RIV/68378297:_____/20:00505748 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s42417-019-00132-1" target="_blank" >https://doi.org/10.1007/s42417-019-00132-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42417-019-00132-1" target="_blank" >10.1007/s42417-019-00132-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Limit trajectories in a non-holonomic system of a ball moving inside a spherical cavity
Popis výsledku v původním jazyce
The area of tuned mass dampers is a wide field of inspiration for theoretical studies in nonlinear dynamics and dynamic stability. In the paper, the authors analyze the regular and distinctive patterns of the free motion of a ball type tuned mass damper. The governing differential system modeling movement of a heavy ball rolling inside a spherical cavity is formulated and investigated, six degrees of freedom with three non-holonomic constraints and no slipping are assumed. Predominance of the Appell-Gibbs approach over the conventional Lagrangian procedure is pointed out when complicated non-holonomic systems are in question. General properties of the differential system in the normal form are discussed and possibilities of further investigation using semianalytical methods are outlined. Simultaneously, a wide program of numerical simulation is presented concerning the homogeneous system with a number of initial condition settings and other parameter variants. A number of limit trajectories are extracted and physically interpreted. The shape and general character of regular solutions within individual domains delimited by these limits are analyzed in order to facilitate a practical application of this theoretical background. Assumptions of further investigation are outlined.
Název v anglickém jazyce
Limit trajectories in a non-holonomic system of a ball moving inside a spherical cavity
Popis výsledku anglicky
The area of tuned mass dampers is a wide field of inspiration for theoretical studies in nonlinear dynamics and dynamic stability. In the paper, the authors analyze the regular and distinctive patterns of the free motion of a ball type tuned mass damper. The governing differential system modeling movement of a heavy ball rolling inside a spherical cavity is formulated and investigated, six degrees of freedom with three non-holonomic constraints and no slipping are assumed. Predominance of the Appell-Gibbs approach over the conventional Lagrangian procedure is pointed out when complicated non-holonomic systems are in question. General properties of the differential system in the normal form are discussed and possibilities of further investigation using semianalytical methods are outlined. Simultaneously, a wide program of numerical simulation is presented concerning the homogeneous system with a number of initial condition settings and other parameter variants. A number of limit trajectories are extracted and physically interpreted. The shape and general character of regular solutions within individual domains delimited by these limits are analyzed in order to facilitate a practical application of this theoretical background. Assumptions of further investigation are outlined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-26353J" target="_blank" >GC17-26353J: Teoretické prediktivní modely interakce proměnného a pohyblivého zatížení využitelné v monitoringu mostních konstrukcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Vibration Engineering & Technologies
ISSN
2321-3558
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
16
Strana od-do
269-284
Kód UT WoS článku
000522457000002
EID výsledku v databázi Scopus
2-s2.0-85071194292