Time-lapse micro-CT analysis of fatigue microcrack propagation in cortical bone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00523137" target="_blank" >RIV/68378297:_____/20:00523137 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1748-0221/15/03/C03031" target="_blank" >https://doi.org/10.1088/1748-0221/15/03/C03031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-0221/15/03/C03031" target="_blank" >10.1088/1748-0221/15/03/C03031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-lapse micro-CT analysis of fatigue microcrack propagation in cortical bone
Popis výsledku v původním jazyce
In this paper, a time-lapse micro-tomography (micro-CT) analysis has been used for identifying of fatigue microcracks in human cortical bone. A custom designed table-top loading device was employed for in-situ fatigue loading in an X-ray scanner. The initial defects (thin microcracks) in the bone were induced by the first loading step with a peak force sufficient for crack initiation. Then, the in-situ fatigue loading was performed to induce propagation of the microcracks. Loading increments of several thousand load cycles, with period of approximately four seconds were used to investigate the crack propagation phenomena. The fatigue testing was finished after approximately 13,000 cycles. The micro-CT scans were performed using a modular X-ray imaging device. During the entire experimental procedure, the in-situ loading device was mounted on a rotary stage of the X-ray scanner. The tested specimen was scanned using the highresolution micro-CT in the representative loading steps (before initiation of the microcracks, directly after the initiation and each time after a defined increment of fatigue cycles was reached). The individual micro-CT reconstructions of the specimen were processed using differential tomography for the identification of the individual microcracks in the microstructure and for the investigation of the recorded by the in-situ loading device during the fatigue testing and the damage development identified from the mechanical data was connected to the changes in the microstructure identified in the micro-tomography results.
Název v anglickém jazyce
Time-lapse micro-CT analysis of fatigue microcrack propagation in cortical bone
Popis výsledku anglicky
In this paper, a time-lapse micro-tomography (micro-CT) analysis has been used for identifying of fatigue microcracks in human cortical bone. A custom designed table-top loading device was employed for in-situ fatigue loading in an X-ray scanner. The initial defects (thin microcracks) in the bone were induced by the first loading step with a peak force sufficient for crack initiation. Then, the in-situ fatigue loading was performed to induce propagation of the microcracks. Loading increments of several thousand load cycles, with period of approximately four seconds were used to investigate the crack propagation phenomena. The fatigue testing was finished after approximately 13,000 cycles. The micro-CT scans were performed using a modular X-ray imaging device. During the entire experimental procedure, the in-situ loading device was mounted on a rotary stage of the X-ray scanner. The tested specimen was scanned using the highresolution micro-CT in the representative loading steps (before initiation of the microcracks, directly after the initiation and each time after a defined increment of fatigue cycles was reached). The individual micro-CT reconstructions of the specimen were processed using differential tomography for the identification of the individual microcracks in the microstructure and for the investigation of the recorded by the in-situ loading device during the fatigue testing and the damage development identified from the mechanical data was connected to the changes in the microstructure identified in the micro-tomography results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Inženýrské aplikace fyziky mikrosvěta</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
C03031
Kód UT WoS článku
000528039600031
EID výsledku v databázi Scopus
2-s2.0-85084192771