Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Non-holonomic systems in view of Hamiltonian principle

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00536912" target="_blank" >RIV/68378297:_____/20:00536912 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-15-8049-9_1" target="_blank" >http://dx.doi.org/10.1007/978-981-15-8049-9_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-15-8049-9_1" target="_blank" >10.1007/978-981-15-8049-9_1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Non-holonomic systems in view of Hamiltonian principle

  • Popis výsledku v původním jazyce

    The aim of the paper is to outline some important attributes of non-holonomic systems, which appear in dynamics of deformable systems interacting with neighborhood. The paper is oriented to theoretical way of investigation. Its core consists in characterization of basic and generalized non-holonomic systems inspired by civil and mechanical engineering, but coming also frequently from other disciplines. Definition of a dynamic system consists of specification of the system itself and relevant constraints representing links with surrounding environment. The governing differential system itself is deduced from a definition based on the Hamiltonian principle. A new form of the generalized Lagrange equation system is derived assuming higher time derivatives of displacement components in the kinetic energy definition, as they emerge due to interaction of mechanical and other physical fields. Linear and nonlinear definitions of non-holonomic constraints including arbitrary time derivative order, which originate from interaction of mechanical and other physical fields are discussed. Consequently, the constraints can be of a very general character, they include many variants from a simple geometric coupling with fixed points and interaction with the movement trajectory to a soft relation to surrounding area via complicated time-dependent constraints of deterministic or random types. Lagrangian multiplier techniques are employed incorporating the non-holonomic constraints of simple or higher order into the complete mathematical model. Comparison with corresponding equation systems obtained by means of the virtual works principle is done. Several particular mathematical models deduced by this conventional way including classical Lagrangian equation system are cited and interpreted in view of the new model following from the Hamiltonian principle. Strengths and shortcomings of both procedures are evaluated and domains of the new approach preference are outlined. Four illustrating examples are included to demonstrate the large variety of dynamic systems. Relation to some branches beyond classical definition of dynamics are mentioned in order to demonstrate the general character of the theoretical background discussed and its applicability in domains apparently far from mechanical or civil engineering.

  • Název v anglickém jazyce

    Non-holonomic systems in view of Hamiltonian principle

  • Popis výsledku anglicky

    The aim of the paper is to outline some important attributes of non-holonomic systems, which appear in dynamics of deformable systems interacting with neighborhood. The paper is oriented to theoretical way of investigation. Its core consists in characterization of basic and generalized non-holonomic systems inspired by civil and mechanical engineering, but coming also frequently from other disciplines. Definition of a dynamic system consists of specification of the system itself and relevant constraints representing links with surrounding environment. The governing differential system itself is deduced from a definition based on the Hamiltonian principle. A new form of the generalized Lagrange equation system is derived assuming higher time derivatives of displacement components in the kinetic energy definition, as they emerge due to interaction of mechanical and other physical fields. Linear and nonlinear definitions of non-holonomic constraints including arbitrary time derivative order, which originate from interaction of mechanical and other physical fields are discussed. Consequently, the constraints can be of a very general character, they include many variants from a simple geometric coupling with fixed points and interaction with the movement trajectory to a soft relation to surrounding area via complicated time-dependent constraints of deterministic or random types. Lagrangian multiplier techniques are employed incorporating the non-holonomic constraints of simple or higher order into the complete mathematical model. Comparison with corresponding equation systems obtained by means of the virtual works principle is done. Several particular mathematical models deduced by this conventional way including classical Lagrangian equation system are cited and interpreted in view of the new model following from the Hamiltonian principle. Strengths and shortcomings of both procedures are evaluated and domains of the new approach preference are outlined. Four illustrating examples are included to demonstrate the large variety of dynamic systems. Relation to some branches beyond classical definition of dynamics are mentioned in order to demonstrate the general character of the theoretical background discussed and its applicability in domains apparently far from mechanical or civil engineering.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 14th International conference on vibration problems. ICOVP 2019

  • ISBN

    978-981-15-8048-2

  • ISSN

    2195-4356

  • e-ISSN

    2195-4364

  • Počet stran výsledku

    23

  • Strana od-do

    3-25

  • Název nakladatele

    Springer

  • Místo vydání

    Singapur

  • Místo konání akce

    Hersonissos

  • Datum konání akce

    1. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku