Stability of a bar influenced by small and large imperfections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00539617" target="_blank" >RIV/68378297:_____/20:00539617 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21495/5896-3-374" target="_blank" >https://doi.org/10.21495/5896-3-374</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/5896-3-374" target="_blank" >10.21495/5896-3-374</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability of a bar influenced by small and large imperfections
Popis výsledku v původním jazyce
The geometrical and physical imperfections of systems can drastically reduce their critical loading. These imperfections are usually of stochastic character and, therefore, they act as random parametric perturbations of coefficients of corresponding differential equations. In this paper, the imperfections are introduced as multidimensional statistics on the set of a large number of realizations of the same system. As far as the amount of information is small or the imperfections themselves cannot be considered small, the convex analysis is preferable. The paper compares results obtained by both stochastic and convex analyses for hyperprism and demonstrates when each of them is more convenient to be used. Besides of the hyper-prism, the possibilities and properties of other modifications of convex method are considered, especially those based on the definition of imperfection zone marked as a centric hyper-ellipsoid or as an eccentric hyper-ellipsoid. The analytical background was brought up to the level when only a few configurations of imperfections are sufficient to be evaluated numerically. These configurations are obtained by means of the convex analysis as points of extreme critical loading using the Lagrange method of constrained extremes.
Název v anglickém jazyce
Stability of a bar influenced by small and large imperfections
Popis výsledku anglicky
The geometrical and physical imperfections of systems can drastically reduce their critical loading. These imperfections are usually of stochastic character and, therefore, they act as random parametric perturbations of coefficients of corresponding differential equations. In this paper, the imperfections are introduced as multidimensional statistics on the set of a large number of realizations of the same system. As far as the amount of information is small or the imperfections themselves cannot be considered small, the convex analysis is preferable. The paper compares results obtained by both stochastic and convex analyses for hyperprism and demonstrates when each of them is more convenient to be used. Besides of the hyper-prism, the possibilities and properties of other modifications of convex method are considered, especially those based on the definition of imperfection zone marked as a centric hyper-ellipsoid or as an eccentric hyper-ellipsoid. The analytical background was brought up to the level when only a few configurations of imperfections are sufficient to be evaluated numerically. These configurations are obtained by means of the convex analysis as points of extreme critical loading using the Lagrange method of constrained extremes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering mechanics 2020. 26th International conference. Book of full texts
ISBN
978-80-214-5896-3
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
6
Strana od-do
374-379
Název nakladatele
Brno University od Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
24. 11. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000667956100086