Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F21%3A00546049" target="_blank" >RIV/68378297:_____/21:00546049 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jobe.2021.103123" target="_blank" >https://doi.org/10.1016/j.jobe.2021.103123</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jobe.2021.103123" target="_blank" >10.1016/j.jobe.2021.103123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP
Popis výsledku v původním jazyce
The field of progressive collapse has attracted considerable attention worldwide, while little existing building structure has been constructed with progressive collapse design. Therefore, some researchers began to explore effective strengthening methods to improve the progressive collapse resistance of existing building structures while saving cost, resources, and time. In this paper, two 1-bay-by-2-bay two-story reinforced concrete (RC) frames with the loss of one edge column were constructed and tested, including the control and strengthened specimens. The strengthened specimen was strengthened with high-performance ferrocement laminate and bonded steel plates to investigate the strengthening effectiveness. Based on the data collected during the experiment and simulated results, crack development patterns, load-displacement relations, lateral deformation, load distribution, and the effect of strengthening were discussed. Additionally, the finite-element (FE) simulation and the theoretical analysis for such structure were implemented. The results show that the initial stiffness andnbearing capacity of frame increased after strengthening. Increasing the steel strand quantity, the peak load can be significantly increased. The stiffness in different floor will have an effect on the load bearing distribution. Higher stiffness in floor will bear much vertical load. The axial compression on adjacent columns increased while decreased in the diagonal columns. The contribution to bearing capacity of slab is weaker than beams. The slab could share about 2/3 vertical load of beams for control specimens and less than 1/2 vertical load of beams for strengthening specimens.
Název v anglickém jazyce
Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP
Popis výsledku anglicky
The field of progressive collapse has attracted considerable attention worldwide, while little existing building structure has been constructed with progressive collapse design. Therefore, some researchers began to explore effective strengthening methods to improve the progressive collapse resistance of existing building structures while saving cost, resources, and time. In this paper, two 1-bay-by-2-bay two-story reinforced concrete (RC) frames with the loss of one edge column were constructed and tested, including the control and strengthened specimens. The strengthened specimen was strengthened with high-performance ferrocement laminate and bonded steel plates to investigate the strengthening effectiveness. Based on the data collected during the experiment and simulated results, crack development patterns, load-displacement relations, lateral deformation, load distribution, and the effect of strengthening were discussed. Additionally, the finite-element (FE) simulation and the theoretical analysis for such structure were implemented. The results show that the initial stiffness andnbearing capacity of frame increased after strengthening. Increasing the steel strand quantity, the peak load can be significantly increased. The stiffness in different floor will have an effect on the load bearing distribution. Higher stiffness in floor will bear much vertical load. The axial compression on adjacent columns increased while decreased in the diagonal columns. The contribution to bearing capacity of slab is weaker than beams. The slab could share about 2/3 vertical load of beams for control specimens and less than 1/2 vertical load of beams for strengthening specimens.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Building Engineering
ISSN
2352-7102
e-ISSN
2352-7102
Svazek periodika
43
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
103123
Kód UT WoS článku
000697180000001
EID výsledku v databázi Scopus
2-s2.0-85116286455