Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Random response of a simple system with stochastic uncertainty and noise in parameters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F21%3A00548924" target="_blank" >RIV/68378297:_____/21:00548924 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.24132/acm.2021.575" target="_blank" >https://doi.org/10.24132/acm.2021.575</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24132/acm.2021.575" target="_blank" >10.24132/acm.2021.575</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Random response of a simple system with stochastic uncertainty and noise in parameters

  • Popis výsledku v původním jazyce

    The paper is concerned with the analysis of the simultaneous effect of a random perturbation and white noise in the coefficient of the system on its response. The excitation of the system of the 1st order is described by the sum of a deterministic signal and additive white noise, which is partly correlated with a parametric noise. The random perturbation in the parameter is considered statistics in a set of realizations. It reveals that the probability density of these perturbations must be limited in the phase space, otherwise the system would lose the stochastic stability in probability, either immediately or after a certain time. The width of the permissible zone depends on the intensity of the parametric noise, the extent of correlation with the additive excitation noise, and the type of probability density. The general explanation is demonstrated on cases of normal, uniform, and truncated normal probability densities.

  • Název v anglickém jazyce

    Random response of a simple system with stochastic uncertainty and noise in parameters

  • Popis výsledku anglicky

    The paper is concerned with the analysis of the simultaneous effect of a random perturbation and white noise in the coefficient of the system on its response. The excitation of the system of the 1st order is described by the sum of a deterministic signal and additive white noise, which is partly correlated with a parametric noise. The random perturbation in the parameter is considered statistics in a set of realizations. It reveals that the probability density of these perturbations must be limited in the phase space, otherwise the system would lose the stochastic stability in probability, either immediately or after a certain time. The width of the permissible zone depends on the intensity of the parametric noise, the extent of correlation with the additive excitation noise, and the type of probability density. The general explanation is demonstrated on cases of normal, uniform, and truncated normal probability densities.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied and Computational Mechanics

  • ISSN

    1802-680X

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85119920291