Combined random and deterministic effects in a simple aeroelastic model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F24%3A00597904" target="_blank" >RIV/68378297:_____/24:00597904 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4203/ccc.9.8.4" target="_blank" >https://doi.org/10.4203/ccc.9.8.4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4203/ccc.9.8.4" target="_blank" >10.4203/ccc.9.8.4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combined random and deterministic effects in a simple aeroelastic model
Popis výsledku v původním jazyce
The response of slender engineered structures in close proximity to the lock-in frequency region exhibits multiple dominant frequencies that contribute to the quasiperiodic nature of the response. The difference in individual dominant frequencies increases significantly with increasing distance from the lock-in region. This effect alters the character of the response from apparently non-stationary to quasi-periodic, with the frequency of beating varying as the distance from the locking interval changes. In the presence of combined random and harmonic excitation, the response character varies between stationary, cyclo-stationary, and non-stationary, depending on the intensity of the stochastic component. While the probabilistic characteristics of a non-linear Single Degree of Freedom oscillator of the van der Pol type system on a slow time scale can be described using partial amplitudes of the response, this paper specifically focuses on the non-stationary case. The solution to the Fokker-Planck equation for the cross-Probability Density Function of the partial amplitudes is determined using the Galerkin approximation. For this purpose, orthogonal polynomial basis functions are utilized and assessed.
Název v anglickém jazyce
Combined random and deterministic effects in a simple aeroelastic model
Popis výsledku anglicky
The response of slender engineered structures in close proximity to the lock-in frequency region exhibits multiple dominant frequencies that contribute to the quasiperiodic nature of the response. The difference in individual dominant frequencies increases significantly with increasing distance from the lock-in region. This effect alters the character of the response from apparently non-stationary to quasi-periodic, with the frequency of beating varying as the distance from the locking interval changes. In the presence of combined random and harmonic excitation, the response character varies between stationary, cyclo-stationary, and non-stationary, depending on the intensity of the stochastic component. While the probabilistic characteristics of a non-linear Single Degree of Freedom oscillator of the van der Pol type system on a slow time scale can be described using partial amplitudes of the response, this paper specifically focuses on the non-stationary case. The solution to the Fokker-Planck equation for the cross-Probability Density Function of the partial amplitudes is determined using the Galerkin approximation. For this purpose, orthogonal polynomial basis functions are utilized and assessed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-13061S" target="_blank" >GA24-13061S: Kombinované účinky aeroelastických nestabilit na stavební konstrukce</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the fifteenth international conference on computational structures technology
ISBN
—
ISSN
2753-3239
e-ISSN
2753-3239
Počet stran výsledku
13
Strana od-do
8.4
Název nakladatele
Civil-Comp Press
Místo vydání
Edinburgh
Místo konání akce
Praha
Datum konání akce
4. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—