Low temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00181604" target="_blank" >RIV/68407700:21110/11:00181604 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.physa.2011.03.041" target="_blank" >http://dx.doi.org/10.1016/j.physa.2011.03.041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2011.03.041" target="_blank" >10.1016/j.physa.2011.03.041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules.
Popis výsledku v původním jazyce
A convenient, Peierls-type approach to obtain low-temperature phases is to use the method of an m-potential. In this paper we show that, for more complex systems where it may be rather difficult to rewrite the Hamiltonian as an m-potential and whose configurations are subject to linear constraints, the verification of the Peierls condition can be reformulated as a linear programming problem. Before introducing this novel strategy for a general lattice system, we compare it with the m-potential method for a specific model molecular system consisting of an equimolar mixture of a chiral molecule and its non-superimposable mirror image that occupy all the sites of a honeycomb lattice. In one range of interactions, we prove that a racemic low-temperature phase occurs (containing equal numbers of each enantiomer). However, in a neighboring range of interactions, we show that a homochiral low-temperature phase (containing a single enantiomer) exists, and thus chiral segregation occurs in the
Název v anglickém jazyce
Low temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules.
Popis výsledku anglicky
A convenient, Peierls-type approach to obtain low-temperature phases is to use the method of an m-potential. In this paper we show that, for more complex systems where it may be rather difficult to rewrite the Hamiltonian as an m-potential and whose configurations are subject to linear constraints, the verification of the Peierls condition can be reformulated as a linear programming problem. Before introducing this novel strategy for a general lattice system, we compare it with the m-potential method for a specific model molecular system consisting of an equimolar mixture of a chiral molecule and its non-superimposable mirror image that occupy all the sites of a honeycomb lattice. In one range of interactions, we prove that a racemic low-temperature phase occurs (containing equal numbers of each enantiomer). However, in a neighboring range of interactions, we show that a homochiral low-temperature phase (containing a single enantiomer) exists, and thus chiral segregation occurs in the
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
—
Svazek periodika
390
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
3002-3019
Kód UT WoS článku
000291963500004
EID výsledku v databázi Scopus
—