Evaluation of miniMax Criterion in Constrained Design Domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00219522" target="_blank" >RIV/68407700:21110/14:00219522 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.esco2014.femhub.com/docs/ESCO2014_Book_of_Abstracts.pdf" target="_blank" >http://www.esco2014.femhub.com/docs/ESCO2014_Book_of_Abstracts.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of miniMax Criterion in Constrained Design Domains
Popis výsledku v původním jazyce
Space-filling criterion miniMax (mM) of a given design of experiments corresponds to the Largest Empty Sphere problem (LES). The objective is to find the largest (hyper)-sphere that includes no design point and whose center lies in the solved design domain. The value of the miniMax criterion is then equal to the radius of this largest sphere. Position of the largest sphere serves for detection of unexplored areas inside the domain. The smaller the miniMax value, the better the design. The evaluation ofthis criterion represents a complex problem. The exact value can be found using Voronoi diagram. The difficulties associated with finding of intersections of Voronoi edges with faces of the domain can be effectively solved by mirroring of the design points. Unfortunately the time and computational demands of computation of the Voronoi diagram grow rapidly with dimensions. Since engineering praxis often faces constrained multidimensional problems the method for evaluation of the criterion
Název v anglickém jazyce
Evaluation of miniMax Criterion in Constrained Design Domains
Popis výsledku anglicky
Space-filling criterion miniMax (mM) of a given design of experiments corresponds to the Largest Empty Sphere problem (LES). The objective is to find the largest (hyper)-sphere that includes no design point and whose center lies in the solved design domain. The value of the miniMax criterion is then equal to the radius of this largest sphere. Position of the largest sphere serves for detection of unexplored areas inside the domain. The smaller the miniMax value, the better the design. The evaluation ofthis criterion represents a complex problem. The exact value can be found using Voronoi diagram. The difficulties associated with finding of intersections of Voronoi edges with faces of the domain can be effectively solved by mirroring of the design points. Unfortunately the time and computational demands of computation of the Voronoi diagram grow rapidly with dimensions. Since engineering praxis often faces constrained multidimensional problems the method for evaluation of the criterion
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP105%2F12%2F1146" target="_blank" >GAP105/12/1146: Metody paralelizace inženýrských úloh využívající cenově dostupné technologie</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů