Towards RVE via Wang tilings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00221344" target="_blank" >RIV/68407700:21110/14:00221344 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards RVE via Wang tilings
Popis výsledku v původním jazyce
A generalization of popular periodic unit cell approach to modelling of heterogeneous materials is presented. Microstructural information is compressed within a set of Wang tiles, small domino-like domains, instead of a single periodic cell. As result periodicity in reconstructed microstructure inherent to the unit cell approach is reduced and controlled with cardinality of the tile set. Employing a stochastic tiling algorithm allows microstructure realizations of various sizes to be efficiently constructed. This feature makes the tiling concept appealing from the viewpoint of numerical homogenization in which the issue of representativeness of a computational domain is of primary concern. The computational cost of asymptotic homogenization is addressed by making use of repetitive occurrence of tiles in computational domains. In the case of linear problems the global stiffness matrix of whole domain can be assembled from Schur complements of stiffness matrices of individual tiles resul
Název v anglickém jazyce
Towards RVE via Wang tilings
Popis výsledku anglicky
A generalization of popular periodic unit cell approach to modelling of heterogeneous materials is presented. Microstructural information is compressed within a set of Wang tiles, small domino-like domains, instead of a single periodic cell. As result periodicity in reconstructed microstructure inherent to the unit cell approach is reduced and controlled with cardinality of the tile set. Employing a stochastic tiling algorithm allows microstructure realizations of various sizes to be efficiently constructed. This feature makes the tiling concept appealing from the viewpoint of numerical homogenization in which the issue of representativeness of a computational domain is of primary concern. The computational cost of asymptotic homogenization is addressed by making use of repetitive occurrence of tiles in computational domains. In the case of linear problems the global stiffness matrix of whole domain can be assembled from Schur complements of stiffness matrices of individual tiles resul
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-24027S" target="_blank" >GA13-24027S: Komprese reálných materiálových systémů pomocí Wangova dláždění</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů