Dealing with Missing Values in Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00222115" target="_blank" >RIV/68407700:21110/14:00222115 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.si-journal.org/index.php/JSI/article/view/178" target="_blank" >http://www.si-journal.org/index.php/JSI/article/view/178</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dealing with Missing Values in Data
Popis výsledku v původním jazyce
Many existing industrial and research data sets contain missing values due to various reasons, such as manual data entry procedures, equipment errors and incorrect measurements. Problems associated with missing values are loss of efficiency, complications in handling and analyzing the data and bias resulting from differences between missing and complete data. The important factor for selection of approach to missing values is missing data mechanism. There are various strategies for dealing with missingvalues. Some analytical methods have their own approach to handle missing values. Data set reduction is another option. Finally missing values problem can be handled by missing values imputation. This paper presents simple methods for missing values imputation like using most common value, mean or median, closest fit approach and methods based on data mining algorithms like k-nearest neighbor, neural networks and association rules, discusses their usability and presents issues with their
Název v anglickém jazyce
Dealing with Missing Values in Data
Popis výsledku anglicky
Many existing industrial and research data sets contain missing values due to various reasons, such as manual data entry procedures, equipment errors and incorrect measurements. Problems associated with missing values are loss of efficiency, complications in handling and analyzing the data and bias resulting from differences between missing and complete data. The important factor for selection of approach to missing values is missing data mechanism. There are various strategies for dealing with missingvalues. Some analytical methods have their own approach to handle missing values. Data set reduction is another option. Finally missing values problem can be handled by missing values imputation. This paper presents simple methods for missing values imputation like using most common value, mean or median, closest fit approach and methods based on data mining algorithms like k-nearest neighbor, neural networks and association rules, discusses their usability and presents issues with their
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Systems Integration
ISSN
1804-2724
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
42-51
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—