Polynomial Chaos Construction for Structural Reliability Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00231262" target="_blank" >RIV/68407700:21110/15:00231262 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4203/ccp.109.9" target="_blank" >http://dx.doi.org/10.4203/ccp.109.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4203/ccp.109.9" target="_blank" >10.4203/ccp.109.9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial Chaos Construction for Structural Reliability Analysis
Popis výsledku v původním jazyce
Regarding the structural reliability many important factors such as the environmental conditions as well as structural properties have to be taken into account in designing of structures. As aresult of the growth of powerful computing technology, recently developed procedures in the field of stochastic mechanics have become applicable to realistic engineering systems. This paper focuses on employing a surrogate model based on polynomial chaos expansion in uncertainty quantification for structural reliability analysis. The aim of the paper is to review and compare several approaches such as the stochastic Galerkin method, the stochastic collocation method or linear regression based on Latin hypercube sampling for construction of the polynomial chaos-based approximation of a model response. The advantages and disadvantages of these methods are demonstrated within the comparison with the traditional Monte Carlo method on a simple illustrative example of a frame structure.
Název v anglickém jazyce
Polynomial Chaos Construction for Structural Reliability Analysis
Popis výsledku anglicky
Regarding the structural reliability many important factors such as the environmental conditions as well as structural properties have to be taken into account in designing of structures. As aresult of the growth of powerful computing technology, recently developed procedures in the field of stochastic mechanics have become applicable to realistic engineering systems. This paper focuses on employing a surrogate model based on polynomial chaos expansion in uncertainty quantification for structural reliability analysis. The aim of the paper is to review and compare several approaches such as the stochastic Galerkin method, the stochastic collocation method or linear regression based on Latin hypercube sampling for construction of the polynomial chaos-based approximation of a model response. The advantages and disadvantages of these methods are demonstrated within the comparison with the traditional Monte Carlo method on a simple illustrative example of a frame structure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-07299S" target="_blank" >GA15-07299S: Numerické nástroje pro návrh robustních a optimalizovaných experimentů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering
ISBN
978-1-905088-64-5
ISSN
1759-3433
e-ISSN
—
Počet stran výsledku
19
Strana od-do
—
Název nakladatele
Civil-Comp Press Ltd
Místo vydání
Stirling
Místo konání akce
Praha
Datum konání akce
1. 9. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—