Artificial neural networks in the calibration of nonlinear mechanical models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00239626" target="_blank" >RIV/68407700:21110/16:00239626 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/doi:10.1016/j.advengsoft.2016.01.017" target="_blank" >http://dx.doi.org/doi:10.1016/j.advengsoft.2016.01.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2016.01.017" target="_blank" >10.1016/j.advengsoft.2016.01.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial neural networks in the calibration of nonlinear mechanical models
Popis výsledku v původním jazyce
Rapid development in numerical modelling of materials and the complexity of new models increase quickly together with their computational demands. Despite the growing performance of modern computers and clusters, calibration of such models from noisy experimental data remains a nontrivial and often computationally intensive task. Layered neural networks provide a robust and efficient technique for overcoming the time-consuming simulations of calibrated models. The potential advantages of neural networks include simple implementation and high versatility in approximating nonlinear relationships. Therefore, there were several approaches proposed in literature for accelerating the calibration of nonlinear models by neural networks. This contribution reviews and compares three possible strategies based on approximating (i) the model response, (ii) the inverse relationship between the model response and its parameters and (iii) an error function quantifying how well the model fits the data. The advantages and drawbacks of particular strategies are demonstrated with the calibration of four parameters of an affinity hydration model from simulated data as well as from experimental measurements. The affinity hydration model is highly nonlinear but computationally cheap, thus allowing its calibration without any approximation and better quantification of results obtained by the examined calibration strategies. This paper can be viewed as a guide for engineers to help them develop an appropriate strategy for their particular calibration problems.
Název v anglickém jazyce
Artificial neural networks in the calibration of nonlinear mechanical models
Popis výsledku anglicky
Rapid development in numerical modelling of materials and the complexity of new models increase quickly together with their computational demands. Despite the growing performance of modern computers and clusters, calibration of such models from noisy experimental data remains a nontrivial and often computationally intensive task. Layered neural networks provide a robust and efficient technique for overcoming the time-consuming simulations of calibrated models. The potential advantages of neural networks include simple implementation and high versatility in approximating nonlinear relationships. Therefore, there were several approaches proposed in literature for accelerating the calibration of nonlinear models by neural networks. This contribution reviews and compares three possible strategies based on approximating (i) the model response, (ii) the inverse relationship between the model response and its parameters and (iii) an error function quantifying how well the model fits the data. The advantages and drawbacks of particular strategies are demonstrated with the calibration of four parameters of an affinity hydration model from simulated data as well as from experimental measurements. The affinity hydration model is highly nonlinear but computationally cheap, thus allowing its calibration without any approximation and better quantification of results obtained by the examined calibration strategies. This paper can be viewed as a guide for engineers to help them develop an appropriate strategy for their particular calibration problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Engineering Software
ISSN
0965-9978
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
68-81
Kód UT WoS článku
000371899900007
EID výsledku v databázi Scopus
2-s2.0-84959377812