Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Compression and reconstruction of random microstructures using accelerated lineal path function

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00300509" target="_blank" >RIV/68407700:21110/16:00300509 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.commatsci.2016.04.044" target="_blank" >http://dx.doi.org/10.1016/j.commatsci.2016.04.044</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.commatsci.2016.04.044" target="_blank" >10.1016/j.commatsci.2016.04.044</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Compression and reconstruction of random microstructures using accelerated lineal path function

  • Popis výsledku v původním jazyce

    Microstructure reconstruction and compression techniques are designed to identify microstructures with desired properties. While a microstructure reconstruction involves searching for a microstructure with prescribed statistical properties, a microstructure compression focuses on efficient representation of material morphology for the purpose of multiscale modelling. Successful application of these techniques, nevertheless, requires proper understanding of the underlying statistical descriptors quantifying morphology of a material. In this paper, we focus on a lineal path function designed to capture short-range effects and phase connectedness, which can hardly be handled by the commonly used two-point probability function. Usage of the lineal path function is, however, significantly limited because of huge computational requirements. So as to examine the properties of the lineal path function during computationally exhaustive compression and reconstruction processes, we start with an acceleration of the lineal path evaluation, namely by porting part of its code to a graphics processing unit using the CUDA (Compute Unified Device Architecture) programming environment. This allows us to present a unique comparison of the entire lineal path function with the commonly used rough approximation based on the Monte Carlo and/or sampling template. Moreover, this accelerated version of the lineal path function is then compared to the two-point probability function during the compression and reconstruction of two-phase morphologies. Their significant features are discussed and illustrated using a set of artificial periodic as well as real-world random microstructures.

  • Název v anglickém jazyce

    Compression and reconstruction of random microstructures using accelerated lineal path function

  • Popis výsledku anglicky

    Microstructure reconstruction and compression techniques are designed to identify microstructures with desired properties. While a microstructure reconstruction involves searching for a microstructure with prescribed statistical properties, a microstructure compression focuses on efficient representation of material morphology for the purpose of multiscale modelling. Successful application of these techniques, nevertheless, requires proper understanding of the underlying statistical descriptors quantifying morphology of a material. In this paper, we focus on a lineal path function designed to capture short-range effects and phase connectedness, which can hardly be handled by the commonly used two-point probability function. Usage of the lineal path function is, however, significantly limited because of huge computational requirements. So as to examine the properties of the lineal path function during computationally exhaustive compression and reconstruction processes, we start with an acceleration of the lineal path evaluation, namely by porting part of its code to a graphics processing unit using the CUDA (Compute Unified Device Architecture) programming environment. This allows us to present a unique comparison of the entire lineal path function with the commonly used rough approximation based on the Monte Carlo and/or sampling template. Moreover, this accelerated version of the lineal path function is then compared to the two-point probability function during the compression and reconstruction of two-phase morphologies. Their significant features are discussed and illustrated using a set of artificial periodic as well as real-world random microstructures.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Materials Science

  • ISSN

    0927-0256

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    102-117

  • Kód UT WoS článku

    000378516900011

  • EID výsledku v databázi Scopus

    2-s2.0-84977126013