Multi-Objective Reliability-Based Design Optimization using Subset Simulation Enhanced by Meta-Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00301197" target="_blank" >RIV/68407700:21110/16:00301197 - isvavai.cz</a>
Výsledek na webu
<a href="http://rec2016.rub.de/papers.html" target="_blank" >http://rec2016.rub.de/papers.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Objective Reliability-Based Design Optimization using Subset Simulation Enhanced by Meta-Models
Popis výsledku v původním jazyce
This paper deals with double-looped reliability-based design optimization, where the reduction of the computational effort is made by utilizing subset simulation using local meta-models, namely radial basis function model, that are assembled from an adaptively updated Design of Experiment (DoE). Since the optimized design variables change with every optimization iteration and a meta-model is utilized for a reliability assessment, the meta-model is trained only in the vicinity of the relevant design variable which makes the meta-model computationally faster and more precise. DoE is updated by selected points from subset simulation samples with respect to two criteria: first, beneficial samples are located in the vicinity of the limit state, second, these samples should also be placed in the sparsest position of the DoE.
Název v anglickém jazyce
Multi-Objective Reliability-Based Design Optimization using Subset Simulation Enhanced by Meta-Models
Popis výsledku anglicky
This paper deals with double-looped reliability-based design optimization, where the reduction of the computational effort is made by utilizing subset simulation using local meta-models, namely radial basis function model, that are assembled from an adaptively updated Design of Experiment (DoE). Since the optimized design variables change with every optimization iteration and a meta-model is utilized for a reliability assessment, the meta-model is trained only in the vicinity of the relevant design variable which makes the meta-model computationally faster and more precise. DoE is updated by selected points from subset simulation samples with respect to two criteria: first, beneficial samples are located in the vicinity of the limit state, second, these samples should also be placed in the sparsest position of the DoE.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-07299S" target="_blank" >GA15-07299S: Numerické nástroje pro návrh robustních a optimalizovaných experimentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů