Optimization methods in geodetic networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00302067" target="_blank" >RIV/68407700:21110/16:00302067 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization methods in geodetic networks
Popis výsledku v původním jazyce
The optimization of geodetic network is often neglected but very important topic in the field of engineering surveying. The optimization is necessary especially for networks with high accuracy requirements like deformations monitoring networks. Mathematical optimization is often replaced by a design based on experience developed on the basis of known accuracy of elementary tasks. Optimization means minimizing measurement costs fulfilling the requirements for accuracy or reliability. We distinguish several types of optimization by parameters of geodetic network deals with. They are called zero, first, second and third order design. Most of the articles engage in first and second order design, which solve optimal point position and weight of observations respectively. These problems are solvable by well-known optimization algorithms like linear or quadratic programming. These algorithms generally operate but practical use is rare. Recently, many new optimization algorithms were created in connection with strong increases in computing power. Examples include genetic algorithms, simulated annealing or particle swarm algorithm. These methods can be applied to geodetic networks and can solve previously unsolvable problems. In this paper, will be discussed known methods of optimization and will be evaluated applicability of them in designing of real networks.
Název v anglickém jazyce
Optimization methods in geodetic networks
Popis výsledku anglicky
The optimization of geodetic network is often neglected but very important topic in the field of engineering surveying. The optimization is necessary especially for networks with high accuracy requirements like deformations monitoring networks. Mathematical optimization is often replaced by a design based on experience developed on the basis of known accuracy of elementary tasks. Optimization means minimizing measurement costs fulfilling the requirements for accuracy or reliability. We distinguish several types of optimization by parameters of geodetic network deals with. They are called zero, first, second and third order design. Most of the articles engage in first and second order design, which solve optimal point position and weight of observations respectively. These problems are solvable by well-known optimization algorithms like linear or quadratic programming. These algorithms generally operate but practical use is rare. Recently, many new optimization algorithms were created in connection with strong increases in computing power. Examples include genetic algorithms, simulated annealing or particle swarm algorithm. These methods can be applied to geodetic networks and can solve previously unsolvable problems. In this paper, will be discussed known methods of optimization and will be evaluated applicability of them in designing of real networks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
16th International Multidisciplinary Scientific Geoconference SGEM 2016 Book 2 Informatics, Geoinformatics,and Remote Sensing Volume II
ISBN
978-619-7105-59-9
ISSN
1314-2704
e-ISSN
—
Počet stran výsledku
8
Strana od-do
479-486
Název nakladatele
International Multidisciplinary Scientific GeoConference SGEM
Místo vydání
Sofia
Místo konání akce
Albena
Datum konání akce
28. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—