A variational formulation of dissipative quasicontinuum methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00303913" target="_blank" >RIV/68407700:21110/16:00303913 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1601.00625" target="_blank" >https://arxiv.org/abs/1601.00625</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2016.10.003" target="_blank" >10.1016/j.ijsolstr.2016.10.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A variational formulation of dissipative quasicontinuum methods
Popis výsledku v původním jazyce
Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of the discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the computational cost of direct numerical simulations by fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech. Phys. Solids 64, 154–169, 2014), the originally conservative QC methodology was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this contribution, the virtual-power-based QC method is reformulated from a variational point of view, by employing the energy-based variational framework for rate-independent processes (Mielke and Roubíček, Rate-Independent Systems: Theory and Application, Springer-Verlag, 2015). By construction it is shown that the QC method with dissipative interactions can be expressed as a minimization problem of a properly built energy potential, providing solutions equivalent to those of the virtual-power-based QC formulation. The theoretical considerations are demonstrated on three simple examples. For them we verify energy consistency, quantify relative errors in energies, and discuss errors in internal variables obtained for different meshes and two summation rules.
Název v anglickém jazyce
A variational formulation of dissipative quasicontinuum methods
Popis výsledku anglicky
Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of the discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the computational cost of direct numerical simulations by fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech. Phys. Solids 64, 154–169, 2014), the originally conservative QC methodology was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this contribution, the virtual-power-based QC method is reformulated from a variational point of view, by employing the energy-based variational framework for rate-independent processes (Mielke and Roubíček, Rate-Independent Systems: Theory and Application, Springer-Verlag, 2015). By construction it is shown that the QC method with dissipative interactions can be expressed as a minimization problem of a properly built energy potential, providing solutions equivalent to those of the virtual-power-based QC formulation. The theoretical considerations are demonstrated on three simple examples. For them we verify energy consistency, quantify relative errors in energies, and discuss errors in internal variables obtained for different meshes and two summation rules.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JJ - Ostatní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-00420S" target="_blank" >GA14-00420S: Kvazikontuální metody pro diskrétní disipativní soustavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Solids and Structures
ISSN
0020-7683
e-ISSN
—
Svazek periodika
102-103
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
214-229
Kód UT WoS článku
000389390200020
EID výsledku v databázi Scopus
2-s2.0-84995605680