Adaptive Boundaries of Wang Tiles for Heterogeneous Material Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00305532" target="_blank" >RIV/68407700:21110/16:00305532 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4028/www.scientific.net/AMR.1144.159" target="_blank" >http://dx.doi.org/10.4028/www.scientific.net/AMR.1144.159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/AMR.1144.159" target="_blank" >10.4028/www.scientific.net/AMR.1144.159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Boundaries of Wang Tiles for Heterogeneous Material Modelling
Popis výsledku v původním jazyce
This contribution deals with algorithms for the generation of modified Wang tiles as a tool for the heterogeneous materials modelling. The proposed approach considers material domains only with 2D hard discs of both equal and different radii distributed within a matrix. Previous works showed potential of the Wang tile principles for reconstruction of heterogeneous materials. The main advantage of the tiling theory for material modelling is to stack large/infinite areas with relative small set of tiles with emphasis on a periodicity reduction in comparison with the traditional Periodic Unit Cell (PUC) concept. The basic units of the Wang Tiling are tiles with codes (colors) on edges. The algorithm for distribution of hard discs is based on the molecular dynamics to avoid particles overlapping. Unfortunately the nature of the Wang tiling together with molecular dynamics algorithms cause periodicity artefacts especially in tile corners of a composed material domain. In this paper a new algorithm with adaptive tile boundaries is presented in order to avoid edge and corner periodicity.
Název v anglickém jazyce
Adaptive Boundaries of Wang Tiles for Heterogeneous Material Modelling
Popis výsledku anglicky
This contribution deals with algorithms for the generation of modified Wang tiles as a tool for the heterogeneous materials modelling. The proposed approach considers material domains only with 2D hard discs of both equal and different radii distributed within a matrix. Previous works showed potential of the Wang tile principles for reconstruction of heterogeneous materials. The main advantage of the tiling theory for material modelling is to stack large/infinite areas with relative small set of tiles with emphasis on a periodicity reduction in comparison with the traditional Periodic Unit Cell (PUC) concept. The basic units of the Wang Tiling are tiles with codes (colors) on edges. The algorithm for distribution of hard discs is based on the molecular dynamics to avoid particles overlapping. Unfortunately the nature of the Wang tiling together with molecular dynamics algorithms cause periodicity artefacts especially in tile corners of a composed material domain. In this paper a new algorithm with adaptive tile boundaries is presented in order to avoid edge and corner periodicity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Modern Methods of Experimental and Computational Investigations in Area of Construction II
ISBN
978-3-0357-1092-2
ISSN
1022-6680
e-ISSN
—
Počet stran výsledku
8
Strana od-do
159-166
Název nakladatele
Trans Tech Publications Inc.
Místo vydání
Pfaffikon
Místo konání akce
Praha
Datum konání akce
22. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—