Mechanical Response of Composites with Respect to Inclusion Interaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00305533" target="_blank" >RIV/68407700:21110/16:00305533 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanical Response of Composites with Respect to Inclusion Interaction
Popis výsledku v původním jazyce
The thesis focuses on efficient ways of computing perturbation fields in a heterogeneous material composed of ellipsoidal inclusions embedded in a homogeneous matrix. The emphasis is on mutual interaction of multiple inclusions. The work rests on the renowned Eshelby analytical solution to the single inclusion problem. In particular, the work presents two distinct approaches. The first method is based on an iterative self-compatibility algorithm. The initial solution is sequentially corrected taking the influence of neighbouring inclusions into account until a compatibility in the strain perturbation field is restored. Besides the classical Eshelby solution for constant strain loading, the method incorporates also the analytical solutions to linear stress free eigenstrains. The second method uses the analytical strain perturbation fields as the shape functions in the Galerkin method. The load coefficients of each inclusion are obtained from the solution of a system of linear algebraic equations. The results of both methods are compared against reference solutions computed by means of the finite element method.
Název v anglickém jazyce
Mechanical Response of Composites with Respect to Inclusion Interaction
Popis výsledku anglicky
The thesis focuses on efficient ways of computing perturbation fields in a heterogeneous material composed of ellipsoidal inclusions embedded in a homogeneous matrix. The emphasis is on mutual interaction of multiple inclusions. The work rests on the renowned Eshelby analytical solution to the single inclusion problem. In particular, the work presents two distinct approaches. The first method is based on an iterative self-compatibility algorithm. The initial solution is sequentially corrected taking the influence of neighbouring inclusions into account until a compatibility in the strain perturbation field is restored. Besides the classical Eshelby solution for constant strain loading, the method incorporates also the analytical solutions to linear stress free eigenstrains. The second method uses the analytical strain perturbation fields as the shape functions in the Galerkin method. The load coefficients of each inclusion are obtained from the solution of a system of linear algebraic equations. The results of both methods are compared against reference solutions computed by means of the finite element method.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-22230S" target="_blank" >GA13-22230S: Hybridní víceúrovňové nástroje modelování heterogenních pevných látek</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů