Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00304308" target="_blank" >RIV/68407700:21110/17:00304308 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.024" target="_blank" >http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.024" target="_blank" >10.1016/j.ijheatmasstransfer.2016.11.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage
Popis výsledku v původním jazyce
We consider three phase-change materials (PCMs) in which a change between two phases may be used to store/release thermal energy. Their enthalpy and heat capacity were measured in a quasistatic regime by adiabatic scanning calorimetry and show, within a certain temperature range, a single distinct jump and peak, respectively. We present a microscopic development from which the jumps and peaks can be accurately fitted and that could be analogously applied even to other PCMs. In addition, we determine the baseline and excess part of the heat capacity and thus the latent heat associated with the phase change. The development is based on the observation that PCMs often have polycrystalline structure, being composed of many single-crystalline grains. The enthalpy and heat capacity measured in experiments are therefore interpreted as superpositions of many contributions that come from the individual grains.
Název v anglickém jazyce
Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage
Popis výsledku anglicky
We consider three phase-change materials (PCMs) in which a change between two phases may be used to store/release thermal energy. Their enthalpy and heat capacity were measured in a quasistatic regime by adiabatic scanning calorimetry and show, within a certain temperature range, a single distinct jump and peak, respectively. We present a microscopic development from which the jumps and peaks can be accurately fitted and that could be analogously applied even to other PCMs. In addition, we determine the baseline and excess part of the heat capacity and thus the latent heat associated with the phase change. The development is based on the observation that PCMs often have polycrystalline structure, being composed of many single-crystalline grains. The enthalpy and heat capacity measured in experiments are therefore interpreted as superpositions of many contributions that come from the individual grains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP105%2F12%2FG059" target="_blank" >GBP105/12/G059: Kumulativní časově závislé procesy ve stavebních materiálech a konstrukcích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Heat and Mass Transfer
ISSN
0017-9310
e-ISSN
1879-2189
Svazek periodika
107
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
123-132
Kód UT WoS článku
000393727300013
EID výsledku v databázi Scopus
2-s2.0-84995704432