Micromechanics-based simulations of compressive and tensile testing on lime-based mortars
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00304656" target="_blank" >RIV/68407700:21110/17:00304656 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0167663616305348" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167663616305348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mechmat.2016.11.011" target="_blank" >10.1016/j.mechmat.2016.11.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Micromechanics-based simulations of compressive and tensile testing on lime-based mortars
Popis výsledku v původním jazyce
The purpose of this paper is to propose a continuum micromechanics model for the simulation of uniaxial compressive and tensile tests on lime-based mortars, in order to predict their stiffness, compressive and tensile strengths, and tensile fracture energy. In tension, we adopt an incremental strain-controlled form of the Mori–Tanaka scheme with a damageable matrix phase, while a simple J<inf>2</inf> yield criterion is employed in compression. To reproduce the behavior of lime-based mortars correctly, the scheme must take into account shrinkage cracking among aggregates. This phenomenon is introduced into the model via penny-shaped cracks, whose density is estimated on the basis of particle size distribution combined with the results of finite element analyses of a single crack formation between two spherical inclusions. Our predictions show a good agreement with experimental data and explain the advantages of compliant crushed brick fragments, often encountered in ancient mortars, over stiff sand particles. The validated model provides a reliable tool for optimizing the composition of modern lime-based mortars with applications in conservation and restoration of architectural heritage.
Název v anglickém jazyce
Micromechanics-based simulations of compressive and tensile testing on lime-based mortars
Popis výsledku anglicky
The purpose of this paper is to propose a continuum micromechanics model for the simulation of uniaxial compressive and tensile tests on lime-based mortars, in order to predict their stiffness, compressive and tensile strengths, and tensile fracture energy. In tension, we adopt an incremental strain-controlled form of the Mori–Tanaka scheme with a damageable matrix phase, while a simple J<inf>2</inf> yield criterion is employed in compression. To reproduce the behavior of lime-based mortars correctly, the scheme must take into account shrinkage cracking among aggregates. This phenomenon is introduced into the model via penny-shaped cracks, whose density is estimated on the basis of particle size distribution combined with the results of finite element analyses of a single crack formation between two spherical inclusions. Our predictions show a good agreement with experimental data and explain the advantages of compliant crushed brick fragments, often encountered in ancient mortars, over stiff sand particles. The validated model provides a reliable tool for optimizing the composition of modern lime-based mortars with applications in conservation and restoration of architectural heritage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-15175S" target="_blank" >GA13-15175S: Prvky z funkčně vrstvených vláknocementových kompozitů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Materials
ISSN
0167-6636
e-ISSN
1872-7743
Svazek periodika
105
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
49-60
Kód UT WoS článku
000393006300005
EID výsledku v databázi Scopus
2-s2.0-85002125781