Assessment of fast heat evolving processes using inverse analysis of calorimetric data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312590" target="_blank" >RIV/68407700:21110/17:00312590 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.118" target="_blank" >http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.118" target="_blank" >10.1016/j.ijheatmasstransfer.2017.07.118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of fast heat evolving processes using inverse analysis of calorimetric data
Popis výsledku v původním jazyce
A computational method for an enhanced assessment of experimental data produced by isothermal calorimeters is presented. Based on the inverse analysis of transient heat transport in the calorimeter, the proposed technique enables reconstruction of fast heat evolving processes. A practical utilization of the developed method is emonstrated for the heat evolution in lime hydrate-water- and Portland cement–water systems where the computational assessment makes it possible to find seven to twelve times higher initial-peak heat power values than the calorimetric measurements. The high level of agreement of original experimental data with its computational representation, R2 = 0.9984 for the lime hydrate-water system and R2 = 0.9992 for the Portland cement–water system, confirms an overall good accuracy of the model. The capability of the developed computational method to correct intrinsic distortions, which are characteristic for specific calorimetric techniques, such as the heat consumption by device components and signal delay, makes good prerequisites for its applications inp hysics, chemistry, and engineering.
Název v anglickém jazyce
Assessment of fast heat evolving processes using inverse analysis of calorimetric data
Popis výsledku anglicky
A computational method for an enhanced assessment of experimental data produced by isothermal calorimeters is presented. Based on the inverse analysis of transient heat transport in the calorimeter, the proposed technique enables reconstruction of fast heat evolving processes. A practical utilization of the developed method is emonstrated for the heat evolution in lime hydrate-water- and Portland cement–water systems where the computational assessment makes it possible to find seven to twelve times higher initial-peak heat power values than the calorimetric measurements. The high level of agreement of original experimental data with its computational representation, R2 = 0.9984 for the lime hydrate-water system and R2 = 0.9992 for the Portland cement–water system, confirms an overall good accuracy of the model. The capability of the developed computational method to correct intrinsic distortions, which are characteristic for specific calorimetric techniques, such as the heat consumption by device components and signal delay, makes good prerequisites for its applications inp hysics, chemistry, and engineering.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP105%2F12%2FG059" target="_blank" >GBP105/12/G059: Kumulativní časově závislé procesy ve stavebních materiálech a konstrukcích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Heat and Mass Transfer
ISSN
0017-9310
e-ISSN
1879-2189
Svazek periodika
115
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
831-838
Kód UT WoS článku
000413131200081
EID výsledku v databázi Scopus
2-s2.0-85026477309