Shifting of LHS Design for Surrogate Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312721" target="_blank" >RIV/68407700:21110/17:00312721 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shifting of LHS Design for Surrogate Modeling
Popis výsledku v původním jazyce
Surrogate modeling (Meta-modeling) is a commonly used approach for analysis of complex systems' behavior. Time and computing demands of analytical models describing such systems are usually very high and in cases of need of multiple evaluations (for example in Monte Carlo based reliability analysis) they cannot be used. Instead, a model of the original model called surrogate model can be used. The purpose of the surrogate model is to approximate an original model's response in an arbitrary point of the design domain while constructed on a very limited and thus computationally cheap training data. The training data consist of the Design of Experiments (DoE) and corresponding responses of the original model. The choice of the DoE is crucial for the quality of the surrogate's approximation and therefore the LHS design is often used for its convenient properties. The contribution proposes a procedure of shifting of a part of the design of experiments in cases where the area of interest is located after some original model's evaluations were performed. The goal is clear: to use the already computed training data while not deteriorate the quality of the DoE.
Název v anglickém jazyce
Shifting of LHS Design for Surrogate Modeling
Popis výsledku anglicky
Surrogate modeling (Meta-modeling) is a commonly used approach for analysis of complex systems' behavior. Time and computing demands of analytical models describing such systems are usually very high and in cases of need of multiple evaluations (for example in Monte Carlo based reliability analysis) they cannot be used. Instead, a model of the original model called surrogate model can be used. The purpose of the surrogate model is to approximate an original model's response in an arbitrary point of the design domain while constructed on a very limited and thus computationally cheap training data. The training data consist of the Design of Experiments (DoE) and corresponding responses of the original model. The choice of the DoE is crucial for the quality of the surrogate's approximation and therefore the LHS design is often used for its convenient properties. The contribution proposes a procedure of shifting of a part of the design of experiments in cases where the area of interest is located after some original model's evaluations were performed. The goal is clear: to use the already computed training data while not deteriorate the quality of the DoE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-11473Y" target="_blank" >GJ16-11473Y: Identifikace aleatorické nejistoty v parametrech heterogenních materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2017 - Book of full texts
ISBN
978-80-214-5497-2
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
4
Strana od-do
690-693
Název nakladatele
Brno University of Technology
Místo vydání
Brno
Místo konání akce
Svratka
Datum konání akce
15. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000411657600162