Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

USING OF RPAS IN PRECISION AGRICULTURE

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00313011" target="_blank" >RIV/68407700:21110/17:00313011 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://sgemworld.at/sgemlib/spip.php?article9444" target="_blank" >https://sgemworld.at/sgemlib/spip.php?article9444</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgem2017/23/S10.041" target="_blank" >10.5593/sgem2017/23/S10.041</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    USING OF RPAS IN PRECISION AGRICULTURE

  • Popis výsledku v původním jazyce

    Remotely Piloted Aircraft Systems (RPAS), which have become more popular in recent years, can obtain data on demand in a short time with a resolution within centimeters. Data collection is environmentally friendly and low-cost from an economical point of view; of course it is best for small areas, such as square km’s only by using winged drones or in a few hectares by use of multicopters. Both types have their advantages and disadvantages. Our laboratory of photogrammetry has, since 2012, focused on using RPAS (drones, UAV) for the mapping or monitoring of agriculture. For this purpose it is better to use winged drones – we have EBee drones at our disposal with new equipment to include a thermal imager, multispectral imager, NIR, NIR red-edge and VIS camera. This is typically remote sensing equipment and is now usable on small areas for local case projects. Last year we started new projects in precise agriculture research, and we tested the equipment on an agricultural site near Plana city (western part of the Czech Republic), near the village of Vysoké Sedlište. On the test site we located fields of corn, rye and grassland. We collected data from the end of March till August in 2016 with a thermal and multispectral imager. A typical flight lasted 30 minutes, taking 200 multispectral images or 6000 thermal images (due to the order of magnitude, lower resolution images with 640x512 pixels were collected with 90% overlapping and were much faster by multispectral camera). Outputs from these instruments are thematic maps, NDVI progress, thermal index maps and unsupervised classification of five spectral channels using remote sensing software’s like Geomatica or Envi. An output shows unequal development of vegetation in different locations.

  • Název v anglickém jazyce

    USING OF RPAS IN PRECISION AGRICULTURE

  • Popis výsledku anglicky

    Remotely Piloted Aircraft Systems (RPAS), which have become more popular in recent years, can obtain data on demand in a short time with a resolution within centimeters. Data collection is environmentally friendly and low-cost from an economical point of view; of course it is best for small areas, such as square km’s only by using winged drones or in a few hectares by use of multicopters. Both types have their advantages and disadvantages. Our laboratory of photogrammetry has, since 2012, focused on using RPAS (drones, UAV) for the mapping or monitoring of agriculture. For this purpose it is better to use winged drones – we have EBee drones at our disposal with new equipment to include a thermal imager, multispectral imager, NIR, NIR red-edge and VIS camera. This is typically remote sensing equipment and is now usable on small areas for local case projects. Last year we started new projects in precise agriculture research, and we tested the equipment on an agricultural site near Plana city (western part of the Czech Republic), near the village of Vysoké Sedlište. On the test site we located fields of corn, rye and grassland. We collected data from the end of March till August in 2016 with a thermal and multispectral imager. A typical flight lasted 30 minutes, taking 200 multispectral images or 6000 thermal images (due to the order of magnitude, lower resolution images with 640x512 pixels were collected with 90% overlapping and were much faster by multispectral camera). Outputs from these instruments are thematic maps, NDVI progress, thermal index maps and unsupervised classification of five spectral channels using remote sensing software’s like Geomatica or Envi. An output shows unequal development of vegetation in different locations.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    17th International Multidisciplinary Scientific Geoconference, Conference Proceedings Volume 17, Informatics, Geoinformatics and Remote Sensing Issue 22, Geodesy and Mine Surveying

  • ISBN

    978-619-7408-02-7

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    331-338

  • Název nakladatele

    International Multidisciplinary Scientific GeoConference SGEM

  • Místo vydání

    Sofia

  • Místo konání akce

    Albena

  • Datum konání akce

    27. 6. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku