Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00315466" target="_blank" >RIV/68407700:21110/17:00315466 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00020711:_____/17:00004615
Výsledek na webu
<a href="https://www.hydrol-earth-syst-sci.net/21/5681/2017/" target="_blank" >https://www.hydrol-earth-syst-sci.net/21/5681/2017/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/hess-21-5681-2017" target="_blank" >10.5194/hess-21-5681-2017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment
Popis výsledku v původním jazyce
This paper presents the methodology used for artificial flood experiments conducted in a small artificial, trained (regulated) channel on the Nučice experimental agricultural catchment (0.5 km2), central Czech Republic, and the results of the experiments. The aim was to monitor the transformation of the flood wave and the sediment transport within the channel. Two series of experiments were carried out in contrasting initial conditions: (a) in September, when the stream banks were dry, the baseflow was negligible, and the channel was fully overgrown with vegetation; and (b) in March, when the stream banks were almost water saturated, the baseflow was above the annual average, and there was no vegetation present. Within each campaign, three successive flood waves, each with an approximate volume of 17 m3 and peak flow of ca. 40 L s-1, were pumped into the upper part of the catchment drainage channel. The transformation of the flood wave and the sediment transport regime within an approximately 400 m long channel section were monitored by measuring the discharge, the turbidity, and the electrical conductivity in three profiles along the stream. On the basis of the results, it was concluded that there is a considerable amount of deposited sediment, even in the well-trained and straight channel that can be re-mobilized by small floods. Part of the recorded sediment therefore originates from the particles deposited during previous soil erosion events. The flood waves initiated in dissimilar instream conditions progressed differently – we show that the saturation of the channel banks, the stream vegetation and the actual baseflow had a strong influence on the flood transformation and the sediment regime in the channel. The sediment moves quickly in winter and early spring, but in the later part of the year the channel serves as a sediment trap and the resuspension is slower, if dense vegetation is present.
Název v anglickém jazyce
Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment
Popis výsledku anglicky
This paper presents the methodology used for artificial flood experiments conducted in a small artificial, trained (regulated) channel on the Nučice experimental agricultural catchment (0.5 km2), central Czech Republic, and the results of the experiments. The aim was to monitor the transformation of the flood wave and the sediment transport within the channel. Two series of experiments were carried out in contrasting initial conditions: (a) in September, when the stream banks were dry, the baseflow was negligible, and the channel was fully overgrown with vegetation; and (b) in March, when the stream banks were almost water saturated, the baseflow was above the annual average, and there was no vegetation present. Within each campaign, three successive flood waves, each with an approximate volume of 17 m3 and peak flow of ca. 40 L s-1, were pumped into the upper part of the catchment drainage channel. The transformation of the flood wave and the sediment transport regime within an approximately 400 m long channel section were monitored by measuring the discharge, the turbidity, and the electrical conductivity in three profiles along the stream. On the basis of the results, it was concluded that there is a considerable amount of deposited sediment, even in the well-trained and straight channel that can be re-mobilized by small floods. Part of the recorded sediment therefore originates from the particles deposited during previous soil erosion events. The flood waves initiated in dissimilar instream conditions progressed differently – we show that the saturation of the channel banks, the stream vegetation and the actual baseflow had a strong influence on the flood transformation and the sediment regime in the channel. The sediment moves quickly in winter and early spring, but in the later part of the year the channel serves as a sediment trap and the resuspension is slower, if dense vegetation is present.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Hydrology and Earth System Sciences
ISSN
1027-5606
e-ISSN
1607-7938
Svazek periodika
21
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
5681-5691
Kód UT WoS článku
000415341800001
EID výsledku v databázi Scopus
2-s2.0-85034440630