Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00317242" target="_blank" >RIV/68407700:21110/17:00317242 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5593/sgem2017H/63" target="_blank" >http://dx.doi.org/10.5593/sgem2017H/63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5593/sgem2017H/63" target="_blank" >10.5593/sgem2017H/63</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas
Popis výsledku v původním jazyce
Currently, a great emphasis is put on the environment, energy intensity, and therefore on applications of the renewable energy sources (RES). Putting a large amount of RES into the modern distribution systems represents certain problems we can address, inter alia, the variable energy outputs of RES aggregated together, including their accumulation managed by respective energy management system (EMS). The result may be the optimization unit commitment of RES distributed in the micro-grids of a fictitious intelligent city composed of an intelligent buildings (IB) complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. The underlying basis of EMS is, among other things, the optimization unit commitment of RES distributed in the micro-grid, distant from a fictitious intelligent city composed of an intelligent buildings complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. As an example of the self-organizing neural network used for cluster analysis (CA), we demonstrate its efficiency in the process of identifying type daily energy consumption diagrams of an intelligent buildings complex combined in the electric micro-grid for a typical working day and typical day off based on network’s annual history. The aforementioned type daily diagrams can be used to predict the power consumption.
Název v anglickém jazyce
Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas
Popis výsledku anglicky
Currently, a great emphasis is put on the environment, energy intensity, and therefore on applications of the renewable energy sources (RES). Putting a large amount of RES into the modern distribution systems represents certain problems we can address, inter alia, the variable energy outputs of RES aggregated together, including their accumulation managed by respective energy management system (EMS). The result may be the optimization unit commitment of RES distributed in the micro-grids of a fictitious intelligent city composed of an intelligent buildings (IB) complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. The underlying basis of EMS is, among other things, the optimization unit commitment of RES distributed in the micro-grid, distant from a fictitious intelligent city composed of an intelligent buildings complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. As an example of the self-organizing neural network used for cluster analysis (CA), we demonstrate its efficiency in the process of identifying type daily energy consumption diagrams of an intelligent buildings complex combined in the electric micro-grid for a typical working day and typical day off based on network’s annual history. The aforementioned type daily diagrams can be used to predict the power consumption.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GREEN BUILDINGS TECHNOLOGIES AND MATERIALS
ISBN
978-619-7408-29-4
ISSN
1314-2704
e-ISSN
—
Počet stran výsledku
10
Strana od-do
767-776
Název nakladatele
SGEM WORLD SCIENCE
Místo vydání
—
Místo konání akce
Vienna
Datum konání akce
27. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—