Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00317242" target="_blank" >RIV/68407700:21110/17:00317242 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5593/sgem2017H/63" target="_blank" >http://dx.doi.org/10.5593/sgem2017H/63</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgem2017H/63" target="_blank" >10.5593/sgem2017H/63</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas

  • Popis výsledku v původním jazyce

    Currently, a great emphasis is put on the environment, energy intensity, and therefore on applications of the renewable energy sources (RES). Putting a large amount of RES into the modern distribution systems represents certain problems we can address, inter alia, the variable energy outputs of RES aggregated together, including their accumulation managed by respective energy management system (EMS). The result may be the optimization unit commitment of RES distributed in the micro-grids of a fictitious intelligent city composed of an intelligent buildings (IB) complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. The underlying basis of EMS is, among other things, the optimization unit commitment of RES distributed in the micro-grid, distant from a fictitious intelligent city composed of an intelligent buildings complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. As an example of the self-organizing neural network used for cluster analysis (CA), we demonstrate its efficiency in the process of identifying type daily energy consumption diagrams of an intelligent buildings complex combined in the electric micro-grid for a typical working day and typical day off based on network’s annual history. The aforementioned type daily diagrams can be used to predict the power consumption.

  • Název v anglickém jazyce

    Application of the Artificial intelligence in the energy solving of Building services of intelligent buildings Areas

  • Popis výsledku anglicky

    Currently, a great emphasis is put on the environment, energy intensity, and therefore on applications of the renewable energy sources (RES). Putting a large amount of RES into the modern distribution systems represents certain problems we can address, inter alia, the variable energy outputs of RES aggregated together, including their accumulation managed by respective energy management system (EMS). The result may be the optimization unit commitment of RES distributed in the micro-grids of a fictitious intelligent city composed of an intelligent buildings (IB) complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. The underlying basis of EMS is, among other things, the optimization unit commitment of RES distributed in the micro-grid, distant from a fictitious intelligent city composed of an intelligent buildings complex. For this purpose, a computer program has been implemented to optimize operating costs to cover energy consumption of intelligent buildings, based on predicted load profiles. As an example of the self-organizing neural network used for cluster analysis (CA), we demonstrate its efficiency in the process of identifying type daily energy consumption diagrams of an intelligent buildings complex combined in the electric micro-grid for a typical working day and typical day off based on network’s annual history. The aforementioned type daily diagrams can be used to predict the power consumption.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    GREEN BUILDINGS TECHNOLOGIES AND MATERIALS

  • ISBN

    978-619-7408-29-4

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    767-776

  • Název nakladatele

    SGEM WORLD SCIENCE

  • Místo vydání

  • Místo konání akce

    Vienna

  • Datum konání akce

    27. 11. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku