Hillslope hydrograph separation: The effects of variable isotopic signatures and hydrodynamic mixing in macroporous soil
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00322710" target="_blank" >RIV/68407700:21110/18:00322710 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jhydrol.2018.05.054" target="_blank" >http://dx.doi.org/10.1016/j.jhydrol.2018.05.054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhydrol.2018.05.054" target="_blank" >10.1016/j.jhydrol.2018.05.054</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hillslope hydrograph separation: The effects of variable isotopic signatures and hydrodynamic mixing in macroporous soil
Popis výsledku v původním jazyce
The prevailing opinion on the temporal origin of water in a hillslope stormflow hydrograph is that the pre-event water represents a dominant fraction. Such conclusion is usually based on hydrograph separation techniques using stable water isotopes (or other conservative tracers) in conjunction with a mass balance approach. In this study, a two-dimensional dual-continuum model was used to study preferential flow of water and transport of Oxygen-18 (O-18) in a vertical cross-section of a hillslope located in a temperate spruce forest. The effects of hydrodynamic mixing and the spatiotemporal variability of isotopic signatures on estimated pre-event/event water fractions in the hillslope discharge were studied by means of numerical simulation experiments. Pre-event and event water contributions to hillslope stormflow were evaluated using a two-component mass balance approach combined with the 2D flow and transport simulations involving real as well as synthetic O-18 signatures. Long-term simulations of O-18 transport in the hillslope segment were compared with the observed O-18 content in soil water and in the hillslope effluent. The results of the long-term simulations indicated significant mixing of pre-event and event water occurring near the subsurface trench and in the soil above the soil bedrock interface where the transfer of O-18 from the soil matrix to the preferential pathways takes place. Despite the dominant role of preferential flow in the generation of hillslope stormflow, the pre-event water formed 52-84% of total subsurface stormflow. The analysis showed that spatially and temporally variable exchange of O-18 between the soil matrix and preferential pathways exerted a primary control on the estimates of the temporal origin of water in the hillslope runoff. It was demonstrated that the degree of hydrodynamic mixing in the flow domain played an important role in the interpretation of the isotope-based hydrograph separation.
Název v anglickém jazyce
Hillslope hydrograph separation: The effects of variable isotopic signatures and hydrodynamic mixing in macroporous soil
Popis výsledku anglicky
The prevailing opinion on the temporal origin of water in a hillslope stormflow hydrograph is that the pre-event water represents a dominant fraction. Such conclusion is usually based on hydrograph separation techniques using stable water isotopes (or other conservative tracers) in conjunction with a mass balance approach. In this study, a two-dimensional dual-continuum model was used to study preferential flow of water and transport of Oxygen-18 (O-18) in a vertical cross-section of a hillslope located in a temperate spruce forest. The effects of hydrodynamic mixing and the spatiotemporal variability of isotopic signatures on estimated pre-event/event water fractions in the hillslope discharge were studied by means of numerical simulation experiments. Pre-event and event water contributions to hillslope stormflow were evaluated using a two-component mass balance approach combined with the 2D flow and transport simulations involving real as well as synthetic O-18 signatures. Long-term simulations of O-18 transport in the hillslope segment were compared with the observed O-18 content in soil water and in the hillslope effluent. The results of the long-term simulations indicated significant mixing of pre-event and event water occurring near the subsurface trench and in the soil above the soil bedrock interface where the transfer of O-18 from the soil matrix to the preferential pathways takes place. Despite the dominant role of preferential flow in the generation of hillslope stormflow, the pre-event water formed 52-84% of total subsurface stormflow. The analysis showed that spatially and temporally variable exchange of O-18 between the soil matrix and preferential pathways exerted a primary control on the estimates of the temporal origin of water in the hillslope runoff. It was demonstrated that the degree of hydrodynamic mixing in the flow domain played an important role in the interpretation of the isotope-based hydrograph separation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-00630J" target="_blank" >GC17-00630J: Preferenční transport ve strukturovaných půdách na různých úrovních prostorového měřítka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology
ISSN
0022-1694
e-ISSN
1879-2707
Svazek periodika
563
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
446-459
Kód UT WoS článku
000441492700036
EID výsledku v databázi Scopus
2-s2.0-85048730553