Effect of Interlayer Mechanical Properties on Quasi-static and Free Vibration Response of Laminated Glass
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00323265" target="_blank" >RIV/68407700:21110/18:00323265 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.open.tudelft.nl/index.php/cgc/article/view/2170" target="_blank" >https://journals.open.tudelft.nl/index.php/cgc/article/view/2170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7480/cgc.6.2170" target="_blank" >10.7480/cgc.6.2170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Interlayer Mechanical Properties on Quasi-static and Free Vibration Response of Laminated Glass
Popis výsledku v původním jazyce
Laminated glass fulfills the demands on safety and security in transparent structural elements used in architecture and other fields of engineering. It can be constructed as forced-entry, bullet, or blast resistant. The basic three-layer configuration consists of two glass panes connected with a polymer or ionomer interlayer; the advanced products contain also other layers. The foil ensures shear coupling and provides post-breakage resistance and damping. For the design of laminated glass structures and their analysis, knowledge of mechanical properties of interlayers is essential. In numerical simulations, the interlayer is most typically described by the generalized Maxwell chain - a classical viscoelastic model which can capture the time/temperature-dependent response of polymers under shear. Its parameters can be found for common interlayer types in the literature. However, they differ even for the same material, because of a slightly different content of additives, different test setups, and different data processing procedures. In this contribution, the dependence of the response of a laminated glass element on the material parameters of the polymer interlayer is studied by means of numerical modelling and experiments. Two examples are shown and discussed, i.e., quasi-static analysis of a simplysupported beam and modal analysis of a free-free beam. Numerical predictions are obtained by a layer-wise model based on the finite element method. These predictions are validated against the detailed experimental data. We demonstrate that using the Maxwell model parameters from the literature determined even for the same material type but not for the concrete foil may lead to unrealistic predictions.
Název v anglickém jazyce
Effect of Interlayer Mechanical Properties on Quasi-static and Free Vibration Response of Laminated Glass
Popis výsledku anglicky
Laminated glass fulfills the demands on safety and security in transparent structural elements used in architecture and other fields of engineering. It can be constructed as forced-entry, bullet, or blast resistant. The basic three-layer configuration consists of two glass panes connected with a polymer or ionomer interlayer; the advanced products contain also other layers. The foil ensures shear coupling and provides post-breakage resistance and damping. For the design of laminated glass structures and their analysis, knowledge of mechanical properties of interlayers is essential. In numerical simulations, the interlayer is most typically described by the generalized Maxwell chain - a classical viscoelastic model which can capture the time/temperature-dependent response of polymers under shear. Its parameters can be found for common interlayer types in the literature. However, they differ even for the same material, because of a slightly different content of additives, different test setups, and different data processing procedures. In this contribution, the dependence of the response of a laminated glass element on the material parameters of the polymer interlayer is studied by means of numerical modelling and experiments. Two examples are shown and discussed, i.e., quasi-static analysis of a simplysupported beam and modal analysis of a free-free beam. Numerical predictions are obtained by a layer-wise model based on the finite element method. These predictions are validated against the detailed experimental data. We demonstrate that using the Maxwell model parameters from the literature determined even for the same material type but not for the concrete foil may lead to unrealistic predictions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-14770S" target="_blank" >GA16-14770S: Pokročilé počítačové a experimentální modelování konstrukcí z laminovaného skla zatížených nízkorychlostním rázem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Challenging Glass 6 - International Conference on the Architectural and Structural Application of Glass
ISBN
978-94-6366-044-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
485-494
Název nakladatele
TU Delft
Místo vydání
Delft
Místo konání akce
Delft
Datum konání akce
17. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—