An isogeometric extension of Trefftz method for elastostatics in two dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00323509" target="_blank" >RIV/68407700:21110/18:00323509 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5783" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5783" target="_blank" >10.1002/nme.5783</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An isogeometric extension of Trefftz method for elastostatics in two dimensions
Popis výsledku v původním jazyce
In this paper, an approach to blend the Hybrid-Trefftz Finite Element Method (HTFEM) and the Isogeometric Analysis (IGA) called the Isogeometric Trefftz (IGAT) method is presented. The structure of the isogeometric extension of the Trefftz method is formally the same as for its conventional counterpart, except the approximation of the boundary displacements and geometry that are carried out using the Non-Uniform Rational B-Splines (NURBS) instead of polynomials. In other words, only the element boundaries are approximated using NURBS basis while the Trefftz approximation is used in the interior of the elements. For that reason, IGAT can be ranked alongside recently developed Isogeometric Boundary Element Method (IGABEM), the NURBS-Enhanced Finite Element Method (NEFEM), the Isogeometric Local Maximum Entropy (IGA-LME) method, and the Isogeometrically enhanced Scaled-Boundary element method (SBFEM), which all use NURBS approximation at the domain boundary only. Theoretical conjectures made in this paper are accompanied by three examples that show that IGAT leads to excellent results using only a few elements.
Název v anglickém jazyce
An isogeometric extension of Trefftz method for elastostatics in two dimensions
Popis výsledku anglicky
In this paper, an approach to blend the Hybrid-Trefftz Finite Element Method (HTFEM) and the Isogeometric Analysis (IGA) called the Isogeometric Trefftz (IGAT) method is presented. The structure of the isogeometric extension of the Trefftz method is formally the same as for its conventional counterpart, except the approximation of the boundary displacements and geometry that are carried out using the Non-Uniform Rational B-Splines (NURBS) instead of polynomials. In other words, only the element boundaries are approximated using NURBS basis while the Trefftz approximation is used in the interior of the elements. For that reason, IGAT can be ranked alongside recently developed Isogeometric Boundary Element Method (IGABEM), the NURBS-Enhanced Finite Element Method (NEFEM), the Isogeometric Local Maximum Entropy (IGA-LME) method, and the Isogeometrically enhanced Scaled-Boundary element method (SBFEM), which all use NURBS approximation at the domain boundary only. Theoretical conjectures made in this paper are accompanied by three examples that show that IGAT leads to excellent results using only a few elements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-22230S" target="_blank" >GA13-22230S: Hybridní víceúrovňové nástroje modelování heterogenních pevných látek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
114
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1213-1227
Kód UT WoS článku
000433574800004
EID výsledku v databázi Scopus
2-s2.0-85044524087