EVALUATION OF LINEAR SYSTEM EQUATIONS SOLVERS ON MULTICORE ARCHITECTURES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00324086" target="_blank" >RIV/68407700:21110/18:00324086 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EVALUATION OF LINEAR SYSTEM EQUATIONS SOLVERS ON MULTICORE ARCHITECTURES
Popis výsledku v původním jazyce
The aim of this paper is the evaluation of an existing parallel, linear equation solver to solve largescale, sparse, non-symmetric systems of linear equations as a part of the finite element software. Traditional finite element solvers run in a serial mode and are limited by available resources. The parallel approach allows to take an advantage of the distributed memory to forming large system matrices and multiple processing units to achieve significant speedups. In this paper, we study differences between the sequential and parallel solutions. Parallel approach contributing shared and distributed memory is represented by SuperLU DIST solver. SuperLU DIST is primary based on distributed memory model with using Message Passing Interface. Su- perLU DIST can be also used as the hybrid parallel model combining shared memory model or with graphical computing units. The performance of parallel solvers is tested on problems from solid mechanics. The two type of benchmark problems discuss in this paper and computations of this problems are based on OOFEM which is a free finite element code with objectoriented architecture for solving mechanical, transport and fluid mechanics problems that operates on various platform. The efficiency of hybrid SuperLU solver is compared to the efficiency of pure shared memory SuperLU solver and to distributed memory solver in PETSc.
Název v anglickém jazyce
EVALUATION OF LINEAR SYSTEM EQUATIONS SOLVERS ON MULTICORE ARCHITECTURES
Popis výsledku anglicky
The aim of this paper is the evaluation of an existing parallel, linear equation solver to solve largescale, sparse, non-symmetric systems of linear equations as a part of the finite element software. Traditional finite element solvers run in a serial mode and are limited by available resources. The parallel approach allows to take an advantage of the distributed memory to forming large system matrices and multiple processing units to achieve significant speedups. In this paper, we study differences between the sequential and parallel solutions. Parallel approach contributing shared and distributed memory is represented by SuperLU DIST solver. SuperLU DIST is primary based on distributed memory model with using Message Passing Interface. Su- perLU DIST can be also used as the hybrid parallel model combining shared memory model or with graphical computing units. The performance of parallel solvers is tested on problems from solid mechanics. The two type of benchmark problems discuss in this paper and computations of this problems are based on OOFEM which is a free finite element code with objectoriented architecture for solving mechanical, transport and fluid mechanics problems that operates on various platform. The efficiency of hybrid SuperLU solver is compared to the efficiency of pure shared memory SuperLU solver and to distributed memory solver in PETSc.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2018: Book of Full Texts
ISBN
978-80-86246-88-8
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
4
Strana od-do
78-81
Název nakladatele
Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.
Místo vydání
Praha
Místo konání akce
Svratka
Datum konání akce
14. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—