Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Great Fall Dearborn Diversion Long Bypass Reach Hydraulic Modelling Report

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00330164" target="_blank" >RIV/68407700:21110/18:00330164 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Great Fall Dearborn Diversion Long Bypass Reach Hydraulic Modelling Report

  • Popis výsledku v původním jazyce

    The present study conducted by the Czech Technical University in Prague (CTU) created a 1:20 Froude scaled hydraulic model of the design proposed by S2O Design and Engineering (S2O) for Duke Energy (DE) at the Long Bypass Reach of the Great Falls Dearborn Diversion. This model accurately portrays the proposed designs for both the Main and Bypass channels at a scale that has been shown to provide accurate visual and measured hydraulic information such as flow velocities, depths, water surface profile, and wave shape, and size. The modelling study can correctly assess the safety issues of recreational users of the both channels. The initial geometry of the bypass channel did not meet project objectives and was revised utill the optimal design configuration was reached. Minimal changes were needed at the Main channel to meet the defined criteria. The hydraulic modelling study of the Great Fall Dearborn Diversion shows clear evidence about the safety of proposed design through the measured hydraulic parameters for a wide range of flow conditions. The study also includes detailed structural data using laser scanning, which will be used develop the final design drawings following the results of the modelling study.

  • Název v anglickém jazyce

    Great Fall Dearborn Diversion Long Bypass Reach Hydraulic Modelling Report

  • Popis výsledku anglicky

    The present study conducted by the Czech Technical University in Prague (CTU) created a 1:20 Froude scaled hydraulic model of the design proposed by S2O Design and Engineering (S2O) for Duke Energy (DE) at the Long Bypass Reach of the Great Falls Dearborn Diversion. This model accurately portrays the proposed designs for both the Main and Bypass channels at a scale that has been shown to provide accurate visual and measured hydraulic information such as flow velocities, depths, water surface profile, and wave shape, and size. The modelling study can correctly assess the safety issues of recreational users of the both channels. The initial geometry of the bypass channel did not meet project objectives and was revised utill the optimal design configuration was reached. Minimal changes were needed at the Main channel to meet the defined criteria. The hydraulic modelling study of the Great Fall Dearborn Diversion shows clear evidence about the safety of proposed design through the measured hydraulic parameters for a wide range of flow conditions. The study also includes detailed structural data using laser scanning, which will be used develop the final design drawings following the results of the modelling study.

Klasifikace

  • Druh

    V<sub>souhrn</sub> - Souhrnná výzkumná zpráva

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Počet stran výsledku

    88

  • Místo vydání

    Praha

  • Název nakladatele resp. objednatele

    S2O Design and Engineering

  • Verze