A Model of Microstructure Evolution in Metals Exposed to Large Strains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00381740" target="_blank" >RIV/68407700:21110/18:00381740 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/18:00507015
Výsledek na webu
<a href="https://doi.org/10.12693/APhysPolA.134.753" target="_blank" >https://doi.org/10.12693/APhysPolA.134.753</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12693/APhysPolA.134.753" target="_blank" >10.12693/APhysPolA.134.753</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Model of Microstructure Evolution in Metals Exposed to Large Strains
Popis výsledku v původním jazyce
Crystalline materials at yield behave as anisotropic, highly viscous fluids. A microscopic inspection reveals a structural adjustment of the crystal lattice to the material flow carried by dislocations. The resistance to this flow determines the strength of ductile materials. The deformation microstructure evolves within a common framework up to very high strains > 100. To avoid energetically costly multislip, materials are subdivided into regions which deform by fewer slip systems. To maintain compatibility, the regions defined as deformation bands occur in a form of elongated alternately misoriented domains filled with fairly equiaxed dislocation cells. In the proposed continuum mechanics model, the formation of deformation bands of a lamellae type is interpreted as a spontaneous deformation instability caused by an anisotropy of hardening. However, such a model of the bands predicts their extreme orientation and their width tends to zero. This trend is opposed by hardening caused by a bowing stress of dislocations within the cells.
Název v anglickém jazyce
A Model of Microstructure Evolution in Metals Exposed to Large Strains
Popis výsledku anglicky
Crystalline materials at yield behave as anisotropic, highly viscous fluids. A microscopic inspection reveals a structural adjustment of the crystal lattice to the material flow carried by dislocations. The resistance to this flow determines the strength of ductile materials. The deformation microstructure evolves within a common framework up to very high strains > 100. To avoid energetically costly multislip, materials are subdivided into regions which deform by fewer slip systems. To maintain compatibility, the regions defined as deformation bands occur in a form of elongated alternately misoriented domains filled with fairly equiaxed dislocation cells. In the proposed continuum mechanics model, the formation of deformation bands of a lamellae type is interpreted as a spontaneous deformation instability caused by an anisotropy of hardening. However, such a model of the bands predicts their extreme orientation and their width tends to zero. This trend is opposed by hardening caused by a bowing stress of dislocations within the cells.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Physica Polonica A
ISSN
0587-4246
e-ISSN
1898-794X
Svazek periodika
134
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
4
Strana od-do
753-756
Kód UT WoS článku
000453257500032
EID výsledku v databázi Scopus
2-s2.0-85058957258