Singular Spectrum Analysis of Bistatic Tracks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00334129" target="_blank" >RIV/68407700:21110/19:00334129 - isvavai.cz</a>
Výsledek na webu
<a href="http://spsympo.ise.pw.edu.pl" target="_blank" >http://spsympo.ise.pw.edu.pl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SPS.2019.8881969" target="_blank" >10.1109/SPS.2019.8881969</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Singular Spectrum Analysis of Bistatic Tracks
Popis výsledku v původním jazyce
In Multi-Static Primary Surveillance Radar (MSPSR) target tracking, one of the crucial issues is to determine whether track represents Target of Interest (TOI). However so far a consistent approach to such track classification has not been presented yet. The literature describes many track score based methods of only false track elimination or evaluation based on metrics, but many of these require a proper reference (ground truth) which is usually not available. In this paper, we present a new approach to bistatic track classification based on its trajectory Singular Spectrum Analysis (SSA). SSA of track trajectory allows us to gain extra knowledge about track nature. We describe such an analysis using four real datasets covering measurements of diverse target types and show that the analysis of singular spectrum allows us to distinguish TOI tracks from the others. We expect various applications of this type of analysis and discuss possible extensions in conclusion.
Název v anglickém jazyce
Singular Spectrum Analysis of Bistatic Tracks
Popis výsledku anglicky
In Multi-Static Primary Surveillance Radar (MSPSR) target tracking, one of the crucial issues is to determine whether track represents Target of Interest (TOI). However so far a consistent approach to such track classification has not been presented yet. The literature describes many track score based methods of only false track elimination or evaluation based on metrics, but many of these require a proper reference (ground truth) which is usually not available. In this paper, we present a new approach to bistatic track classification based on its trajectory Singular Spectrum Analysis (SSA). SSA of track trajectory allows us to gain extra knowledge about track nature. We describe such an analysis using four real datasets covering measurements of diverse target types and show that the analysis of singular spectrum allows us to distinguish TOI tracks from the others. We expect various applications of this type of analysis and discuss possible extensions in conclusion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 Signal Processing Symposium (SPSympo)
ISBN
978-1-5090-6755-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
76-80
Název nakladatele
University of Warsaw
Místo vydání
Warsaw
Místo konání akce
Krakow
Datum konání akce
17. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—