Design of Nutrient Enriched Cement Paste with a Superabsorbent Polymer for the Bio-based Self-healing Concrete Development
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00336850" target="_blank" >RIV/68407700:21110/19:00336850 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of Nutrient Enriched Cement Paste with a Superabsorbent Polymer for the Bio-based Self-healing Concrete Development
Popis výsledku v původním jazyce
The application of self-healing concrete for durability enhancement has become a widely studied topic in recent decades. This paper focuses on addition of a superabsorbent polymer (SAP) to bio-based self-healing concrete – a material in which cracks are autonomously sealed by incorporated microorganisms. As previously proposed, the SAP could serve as protection of the microorganisms against the harsh concrete environment and possibly to further enhance the materials autogenous sealing capacity. However, determining the applicable bio-based concrete mix design is not without obstacles as the immense absorption capacity of the SAP is, inter alia, closely related to ions present in the solution. This current study compares different mix designs of cement paste with the nutrients applied in the bio-based concrete and the addition of the SAP in dry and partially saturated states. The paste consistencies are determined, and a number of cement paste specimens is prepared to measure flexural and compressive strengths at 7 and 28 days from casting. The flowability results indicate that the SAP in a dry state absorbs slightly less than 25 g/g SAP of extra mixing water as the final consistency was similar to the reference paste. Further, the results showed that the partially saturated SAP is able to retain a great amount of the liquid throughout the mixing process. In this study, the strengths generally drop by still admissible 20% in the case of the dry SAP and extra water addition, whereas the replacement of mixing water by the partially saturated SAP results in a significant strength increase. These findings indicate that the dosage 0.5% SAP by cement weight in both of the states, dry and saturated, is applicable in the nutrient enriched cement paste from the mechanical perspective, although further work which would describe the absorption and retention mechanisms in depth is needed.
Název v anglickém jazyce
Design of Nutrient Enriched Cement Paste with a Superabsorbent Polymer for the Bio-based Self-healing Concrete Development
Popis výsledku anglicky
The application of self-healing concrete for durability enhancement has become a widely studied topic in recent decades. This paper focuses on addition of a superabsorbent polymer (SAP) to bio-based self-healing concrete – a material in which cracks are autonomously sealed by incorporated microorganisms. As previously proposed, the SAP could serve as protection of the microorganisms against the harsh concrete environment and possibly to further enhance the materials autogenous sealing capacity. However, determining the applicable bio-based concrete mix design is not without obstacles as the immense absorption capacity of the SAP is, inter alia, closely related to ions present in the solution. This current study compares different mix designs of cement paste with the nutrients applied in the bio-based concrete and the addition of the SAP in dry and partially saturated states. The paste consistencies are determined, and a number of cement paste specimens is prepared to measure flexural and compressive strengths at 7 and 28 days from casting. The flowability results indicate that the SAP in a dry state absorbs slightly less than 25 g/g SAP of extra mixing water as the final consistency was similar to the reference paste. Further, the results showed that the partially saturated SAP is able to retain a great amount of the liquid throughout the mixing process. In this study, the strengths generally drop by still admissible 20% in the case of the dry SAP and extra water addition, whereas the replacement of mixing water by the partially saturated SAP results in a significant strength increase. These findings indicate that the dosage 0.5% SAP by cement weight in both of the states, dry and saturated, is applicable in the nutrient enriched cement paste from the mechanical perspective, although further work which would describe the absorption and retention mechanisms in depth is needed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15697S" target="_blank" >GA18-15697S: Samohojení cementových kompozitů v důsledku bakteriální kalcifikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Materials Science Forum
ISBN
—
ISSN
1662-9752
e-ISSN
1662-9752
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
Trans Tech Publications
Místo vydání
Curich
Místo konání akce
Brisbane
Datum konání akce
13. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—