Isogeometric Bernoulli beam element with an exact representation of concentrated loadings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00333710" target="_blank" >RIV/68407700:21110/20:00333710 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cma.2019.112745" target="_blank" >https://doi.org/10.1016/j.cma.2019.112745</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2019.112745" target="_blank" >10.1016/j.cma.2019.112745</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Isogeometric Bernoulli beam element with an exact representation of concentrated loadings
Popis výsledku v původním jazyce
Isogeometric analysis, an alternative to standard FEA using CAD geometry representation directly for analysis, can be especially beneficial in the analysis of curved beams. The use of NURBS for both geometrical description and unknown approximations enables an exact representation of arbitrarily curved shapes and introduces higher continuity along an entire computational domain but causes oscillations in numerical solutions when concentrated loading is applied inside a domain. In this paper, this problem is clearly demonstrated and two possible methods for overcoming it are proposed and illustrated on the straight Bernoulli beam formulation. While the first method uses standard IGA procedures to reduce continuity, the second is specially tailored to the problem with no alteration of the initial basis. The advantages and disadvantages of the approaches presented are discussed and more complex problems are considered.
Název v anglickém jazyce
Isogeometric Bernoulli beam element with an exact representation of concentrated loadings
Popis výsledku anglicky
Isogeometric analysis, an alternative to standard FEA using CAD geometry representation directly for analysis, can be especially beneficial in the analysis of curved beams. The use of NURBS for both geometrical description and unknown approximations enables an exact representation of arbitrarily curved shapes and introduces higher continuity along an entire computational domain but causes oscillations in numerical solutions when concentrated loading is applied inside a domain. In this paper, this problem is clearly demonstrated and two possible methods for overcoming it are proposed and illustrated on the straight Bernoulli beam formulation. While the first method uses standard IGA procedures to reduce continuity, the second is specially tailored to the problem with no alteration of the initial basis. The advantages and disadvantages of the approaches presented are discussed and more complex problems are considered.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
361
Číslo periodika v rámci svazku
01.04.2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000508937500020
EID výsledku v databázi Scopus
2-s2.0-85075975137