Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00344754" target="_blank" >RIV/68407700:21110/20:00344754 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1757-899X/960/2/022083" target="_blank" >https://doi.org/10.1088/1757-899X/960/2/022083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1757-899X/960/2/022083" target="_blank" >10.1088/1757-899X/960/2/022083</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
Popis výsledku v původním jazyce
Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes' behaviour, even for different types of bitumen and aggregates considered here.
Název v anglickém jazyce
Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
Popis výsledku anglicky
Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes' behaviour, even for different types of bitumen and aggregates considered here.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13830S" target="_blank" >GA18-13830S: Podrobný výzkum fyzikálně-chemické interakce a souvisejících jevů mezi asfaltem a kamenivem pomocí pokročilých experimentálních metod</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IOP Conference Series: Materials Science and Engineering
ISSN
1757-899X
e-ISSN
1757-899X
Svazek periodika
960
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85098012226