Global optimality in minimum-compliance topology optimization by moment-sum-of-squares hierarchy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00345847" target="_blank" >RIV/68407700:21110/20:00345847 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/20:00345847
Výsledek na webu
<a href="https://mathplus.de/topic-development-lab/tes-winter-2020-21/ma4m/" target="_blank" >https://mathplus.de/topic-development-lab/tes-winter-2020-21/ma4m/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Global optimality in minimum-compliance topology optimization by moment-sum-of-squares hierarchy
Popis výsledku v původním jazyce
Designing minimum-compliance bending-resistant structures with continuous cross-section parameters has been a challenging task because of its non-convexity. We develop a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design variables, allowing us to build an equivalent non-linear semidefinite programming formulation over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations that monotonically converges from below to the optimum of the original problem. Globally optimal solutions can subsequently be extracted using the Curto-Fialkow at extension theorem. Furthermore, we show that a simple correction to the solutions of the relaxed problems establishes a feasible upper bound, thereby deriving a simple sucient condition of global $latex epsilon$-optimality. When the original problem possesses a unique minimum, we show that this solution is found with a zero optimality gap in the limit. We illustrate these theoretical findings on examples of topology optimization of frames and shells, for which we observe that the hierarchy converges in a finite (rather small) number of steps.
Název v anglickém jazyce
Global optimality in minimum-compliance topology optimization by moment-sum-of-squares hierarchy
Popis výsledku anglicky
Designing minimum-compliance bending-resistant structures with continuous cross-section parameters has been a challenging task because of its non-convexity. We develop a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design variables, allowing us to build an equivalent non-linear semidefinite programming formulation over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations that monotonically converges from below to the optimum of the original problem. Globally optimal solutions can subsequently be extracted using the Curto-Fialkow at extension theorem. Furthermore, we show that a simple correction to the solutions of the relaxed problems establishes a feasible upper bound, thereby deriving a simple sucient condition of global $latex epsilon$-optimality. When the original problem possesses a unique minimum, we show that this solution is found with a zero optimality gap in the limit. We illustrate these theoretical findings on examples of topology optimization of frames and shells, for which we observe that the hierarchy converges in a finite (rather small) number of steps.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů