Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00351354" target="_blank" >RIV/68407700:21110/21:00351354 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00466-021-02028-y" target="_blank" >https://doi.org/10.1007/s00466-021-02028-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00466-021-02028-y" target="_blank" >10.1007/s00466-021-02028-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method
Popis výsledku v původním jazyce
A recently introduced representation by a set of Wang tiles-a generalization of the traditional Periodic Unit Cell-based approach-serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an efficient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the generalized finite element method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than 3% error in both the relative L-2 and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge of the macroscopic problem.
Název v anglickém jazyce
Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method
Popis výsledku anglicky
A recently introduced representation by a set of Wang tiles-a generalization of the traditional Periodic Unit Cell-based approach-serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an efficient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the generalized finite element method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than 3% error in both the relative L-2 and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge of the macroscopic problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Mechanics
ISSN
0178-7675
e-ISSN
1432-0924
Svazek periodika
68
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
233-253
Kód UT WoS článku
000653613000001
EID výsledku v databázi Scopus
2-s2.0-85106441436