Precipitation Estimates from Microwave Links for Urban Hydrology: Improving the Accuracy Using Wet-Antenna Calibration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00357497" target="_blank" >RIV/68407700:21110/21:00357497 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precipitation Estimates from Microwave Links for Urban Hydrology: Improving the Accuracy Using Wet-Antenna Calibration
Popis výsledku v původním jazyce
Commercial microwave links (CMLs) can be used as unintentional rainfall sensors and provide path-integrated quantitative precipitation estimates (QPEs). However, the bias common in CML QPEs, which can be often attributed to imprecise correction for wet antenna attenuation (WAA), compromises the application of CML QPEs for many hydrological tasks. To achieve optimal performance, WAA models should be calibrated using independent local rainfall data with high spatiotemporal resolution. Such data are, however, often not available. We explore the possibility to reduce the bias in CML QPEs by calibrating a WAA model using data which could be better available to urban hydrology professionals. We show that, when simulating discharges in a small (1.3 km2) urban catchment, using the WAA model calibrated to discharge observations or to 60-min data from a single rain gauge in the distance of 7 km, the rainfall-runoff model performance is considerably improved compared to uncalibrated CML QPEs.
Název v anglickém jazyce
Precipitation Estimates from Microwave Links for Urban Hydrology: Improving the Accuracy Using Wet-Antenna Calibration
Popis výsledku anglicky
Commercial microwave links (CMLs) can be used as unintentional rainfall sensors and provide path-integrated quantitative precipitation estimates (QPEs). However, the bias common in CML QPEs, which can be often attributed to imprecise correction for wet antenna attenuation (WAA), compromises the application of CML QPEs for many hydrological tasks. To achieve optimal performance, WAA models should be calibrated using independent local rainfall data with high spatiotemporal resolution. Such data are, however, often not available. We explore the possibility to reduce the bias in CML QPEs by calibrating a WAA model using data which could be better available to urban hydrology professionals. We show that, when simulating discharges in a small (1.3 km2) urban catchment, using the WAA model calibrated to discharge observations or to 60-min data from a single rain gauge in the distance of 7 km, the rainfall-runoff model performance is considerably improved compared to uncalibrated CML QPEs.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-14151J" target="_blank" >GC20-14151J: Plošné srážkové odhady kombinující pozorování z mikrovlnných spojů a statistickou asimilaci dat (SpraiLINK)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů