Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fillet Weld Model for Component-Based Finite Element Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00358307" target="_blank" >RIV/68407700:21110/22:00358307 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fillet Weld Model for Component-Based Finite Element Method

  • Popis výsledku v původním jazyce

    Component Based Finite Element Method (CBFEM) is used for design of joints. Plates are modelled as shell elements and components, bolts and welds, as nonlinear springs with de-fined initial stiffness, ultimate resistance and deformation capacity. Material model of plates is bilinear with design yield strength and insignificant strain-hardening. The advantage of CBFEM is that the forces in components are determined by finite element method which is closer to reality compared to assumptions taken by Component Method. The first option of weld model between plates is merge of meshes by multi point con-straint (MPC) which relates the finite element nodes of one plate edge to another plate. The advantage of this approach is the possibility to connect meshes with different densities. Stress peaks, which appear at the end of plate edges, in corners and rounding govern the re-sistance along the whole length of the weld. The second option of weld model between plates is adding equivalent elastoplastic solid element. The load distribution in weld is derived from the MPC, so the stresses are cal-culated in the throat section. The element respects the weld throat thickness, position and orientation. The stress peaks are redistributed along the weld length. The aim of design weld models is not to capture real but design behaviour. Residual stresses or weld shrinkage are not studied. Plastic design of welds is controversial but the paper proves that it is in alignment with the directional method in EN 1993-1-8 for regular welds, welding to unstiffened flanges and long welds and CSA S16 for multi-oriented weld groups. Experiments from Stuttgart for longitudinally loaded welds and from Alberta for transversal-ly loaded welds are used for the validation of the weld model. It is shown that the weld mod-el is safe for static loading in the terms of both resistance and ductility.

  • Název v anglickém jazyce

    Fillet Weld Model for Component-Based Finite Element Method

  • Popis výsledku anglicky

    Component Based Finite Element Method (CBFEM) is used for design of joints. Plates are modelled as shell elements and components, bolts and welds, as nonlinear springs with de-fined initial stiffness, ultimate resistance and deformation capacity. Material model of plates is bilinear with design yield strength and insignificant strain-hardening. The advantage of CBFEM is that the forces in components are determined by finite element method which is closer to reality compared to assumptions taken by Component Method. The first option of weld model between plates is merge of meshes by multi point con-straint (MPC) which relates the finite element nodes of one plate edge to another plate. The advantage of this approach is the possibility to connect meshes with different densities. Stress peaks, which appear at the end of plate edges, in corners and rounding govern the re-sistance along the whole length of the weld. The second option of weld model between plates is adding equivalent elastoplastic solid element. The load distribution in weld is derived from the MPC, so the stresses are cal-culated in the throat section. The element respects the weld throat thickness, position and orientation. The stress peaks are redistributed along the weld length. The aim of design weld models is not to capture real but design behaviour. Residual stresses or weld shrinkage are not studied. Plastic design of welds is controversial but the paper proves that it is in alignment with the directional method in EN 1993-1-8 for regular welds, welding to unstiffened flanges and long welds and CSA S16 for multi-oriented weld groups. Experiments from Stuttgart for longitudinally loaded welds and from Alberta for transversal-ly loaded welds are used for the validation of the weld model. It is shown that the weld mod-el is safe for static loading in the terms of both resistance and ductility.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW01010392" target="_blank" >FW01010392: Pokročilý návrh konstrukčních detailů/prvků pomocí strojového učení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CONNECTIONS IX 9th International Workshop on Connections in Steel Structures

  • ISBN

    978-92-9147-195-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    39-49

  • Název nakladatele

    ECCS/CECM/EKS General Secretariat

  • Místo vydání

    Brussel

  • Místo konání akce

    Coimbra

  • Datum konání akce

    6. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku