Investigation of environmentally friendly gypsum based composites with improved water resistance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00359183" target="_blank" >RIV/68407700:21110/22:00359183 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jclepro.2022.133278" target="_blank" >https://doi.org/10.1016/j.jclepro.2022.133278</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2022.133278" target="_blank" >10.1016/j.jclepro.2022.133278</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of environmentally friendly gypsum based composites with improved water resistance
Popis výsledku v původním jazyce
The water resistance of gypsum based composites, prepared from composed binder and silica sand was investigated. The composed binder contained hemihydrate gypsum, lime hydrate and several supplementary cementitious materials (SCM). Silica fume, granulated blast slag and waste ceramic dust were used as SCM in order to compare materials of various origins with different pozzolan activity. Hydrated lime served as an activator of pozzolanic reaction. Gypsum mortar, containing only calcined gypsum and sand was prepared as a reference material. Phase composition, microstructure, mechanical properties and water transport parameters were studied. While the strength of gypsum mortar stored in the water decreased by 90% at the age of one year, the strength of all materials with composed binder increased. The highest strength was achieved by the composite with silica fume, whose compressive strength increased more than three times. The C–S–H phases were found in all materials with SCM and they have finer porous structure than gypsum mortar. Material with silica fume achieved the best combined environmental and functional efficiency. Material with ceramic dust was deeply studied for the first time. This material is most promising because of very good environmental criteria and its price was lowest of all tested materials. The water resistance of gypsum based composites was significantly improved by the addition of SCM.
Název v anglickém jazyce
Investigation of environmentally friendly gypsum based composites with improved water resistance
Popis výsledku anglicky
The water resistance of gypsum based composites, prepared from composed binder and silica sand was investigated. The composed binder contained hemihydrate gypsum, lime hydrate and several supplementary cementitious materials (SCM). Silica fume, granulated blast slag and waste ceramic dust were used as SCM in order to compare materials of various origins with different pozzolan activity. Hydrated lime served as an activator of pozzolanic reaction. Gypsum mortar, containing only calcined gypsum and sand was prepared as a reference material. Phase composition, microstructure, mechanical properties and water transport parameters were studied. While the strength of gypsum mortar stored in the water decreased by 90% at the age of one year, the strength of all materials with composed binder increased. The highest strength was achieved by the composite with silica fume, whose compressive strength increased more than three times. The C–S–H phases were found in all materials with SCM and they have finer porous structure than gypsum mortar. Material with silica fume achieved the best combined environmental and functional efficiency. Material with ceramic dust was deeply studied for the first time. This material is most promising because of very good environmental criteria and its price was lowest of all tested materials. The water resistance of gypsum based composites was significantly improved by the addition of SCM.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08605S" target="_blank" >GA19-08605S: Vliv plniv na strukturu a vlastnosti síranovápenatých kompozitů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
370
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000848639200004
EID výsledku v databázi Scopus
2-s2.0-85136332052