Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00366897" target="_blank" >RIV/68407700:21110/23:00366897 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijsolstr.2023.112388" target="_blank" >https://doi.org/10.1016/j.ijsolstr.2023.112388</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijsolstr.2023.112388" target="_blank" >10.1016/j.ijsolstr.2023.112388</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation

  • Popis výsledku v původním jazyce

    Micromechanical parameters are essential in understanding the behavior of materials with a heterogeneous structure, which helps to predict complex physical processes such as delamination, cracks, and plasticity. However, identifying these parameters is challenging due to micro-macro length scale differences, required high resolution, and ambiguity in boundary conditions, among others. The Integrated Digital Image Correlation (IDIC) method, a state-of-the-art full-field deterministic approach to parameter identification, is widely used but suffers from high sensitivity to boundary data errors and is limited to identification of parameters within well-posed problems. This article employs Bayesian approach to estimate micromechanical shear and bulk moduli of fiber-reinforced composite samples under plane strain assumption, and to improve handling of boundary noise. The main purpose of this article is to quantify the effect of uncertainty in the boundary conditions in the stochastic setting. To this end, the Metropolis–Hastings Algorithm (MHA) is employed to estimate probability distributions of bulk and shear moduli and boundary condition parameters using IDIC, considering a fiber-reinforced composite sample under plane strain assumption. The performance and robustness of the MHA are compared to two versions of deterministic IDIC method, under artificially introduced random and systematic errors in kinematic boundary conditions. Although MHA is shown to be computationally more expensive and in certain cases less accurate than the recently introduced Boundary-Enriched IDIC, it offers significant advantages, in particular being able to optimize a large number of parameters while obtaining statistical characterization as well as insights into individual parameter relationships. The paper furthermore highlights the benefits of the non-normalized approach to parameter identification with MHA (leading, within deterministic IDIC, to an ill-posed formulation), which significantly improves the robustness in handling the boundary noise.

  • Název v anglickém jazyce

    Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation

  • Popis výsledku anglicky

    Micromechanical parameters are essential in understanding the behavior of materials with a heterogeneous structure, which helps to predict complex physical processes such as delamination, cracks, and plasticity. However, identifying these parameters is challenging due to micro-macro length scale differences, required high resolution, and ambiguity in boundary conditions, among others. The Integrated Digital Image Correlation (IDIC) method, a state-of-the-art full-field deterministic approach to parameter identification, is widely used but suffers from high sensitivity to boundary data errors and is limited to identification of parameters within well-posed problems. This article employs Bayesian approach to estimate micromechanical shear and bulk moduli of fiber-reinforced composite samples under plane strain assumption, and to improve handling of boundary noise. The main purpose of this article is to quantify the effect of uncertainty in the boundary conditions in the stochastic setting. To this end, the Metropolis–Hastings Algorithm (MHA) is employed to estimate probability distributions of bulk and shear moduli and boundary condition parameters using IDIC, considering a fiber-reinforced composite sample under plane strain assumption. The performance and robustness of the MHA are compared to two versions of deterministic IDIC method, under artificially introduced random and systematic errors in kinematic boundary conditions. Although MHA is shown to be computationally more expensive and in certain cases less accurate than the recently introduced Boundary-Enriched IDIC, it offers significant advantages, in particular being able to optimize a large number of parameters while obtaining statistical characterization as well as insights into individual parameter relationships. The paper furthermore highlights the benefits of the non-normalized approach to parameter identification with MHA (leading, within deterministic IDIC, to an ill-posed formulation), which significantly improves the robustness in handling the boundary noise.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Solids and Structures

  • ISSN

    0020-7683

  • e-ISSN

    1879-2146

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    280

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    001035354500001

  • EID výsledku v databázi Scopus

    2-s2.0-85163745734