Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00366897" target="_blank" >RIV/68407700:21110/23:00366897 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijsolstr.2023.112388" target="_blank" >https://doi.org/10.1016/j.ijsolstr.2023.112388</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2023.112388" target="_blank" >10.1016/j.ijsolstr.2023.112388</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation
Popis výsledku v původním jazyce
Micromechanical parameters are essential in understanding the behavior of materials with a heterogeneous structure, which helps to predict complex physical processes such as delamination, cracks, and plasticity. However, identifying these parameters is challenging due to micro-macro length scale differences, required high resolution, and ambiguity in boundary conditions, among others. The Integrated Digital Image Correlation (IDIC) method, a state-of-the-art full-field deterministic approach to parameter identification, is widely used but suffers from high sensitivity to boundary data errors and is limited to identification of parameters within well-posed problems. This article employs Bayesian approach to estimate micromechanical shear and bulk moduli of fiber-reinforced composite samples under plane strain assumption, and to improve handling of boundary noise. The main purpose of this article is to quantify the effect of uncertainty in the boundary conditions in the stochastic setting. To this end, the Metropolis–Hastings Algorithm (MHA) is employed to estimate probability distributions of bulk and shear moduli and boundary condition parameters using IDIC, considering a fiber-reinforced composite sample under plane strain assumption. The performance and robustness of the MHA are compared to two versions of deterministic IDIC method, under artificially introduced random and systematic errors in kinematic boundary conditions. Although MHA is shown to be computationally more expensive and in certain cases less accurate than the recently introduced Boundary-Enriched IDIC, it offers significant advantages, in particular being able to optimize a large number of parameters while obtaining statistical characterization as well as insights into individual parameter relationships. The paper furthermore highlights the benefits of the non-normalized approach to parameter identification with MHA (leading, within deterministic IDIC, to an ill-posed formulation), which significantly improves the robustness in handling the boundary noise.
Název v anglickém jazyce
Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation
Popis výsledku anglicky
Micromechanical parameters are essential in understanding the behavior of materials with a heterogeneous structure, which helps to predict complex physical processes such as delamination, cracks, and plasticity. However, identifying these parameters is challenging due to micro-macro length scale differences, required high resolution, and ambiguity in boundary conditions, among others. The Integrated Digital Image Correlation (IDIC) method, a state-of-the-art full-field deterministic approach to parameter identification, is widely used but suffers from high sensitivity to boundary data errors and is limited to identification of parameters within well-posed problems. This article employs Bayesian approach to estimate micromechanical shear and bulk moduli of fiber-reinforced composite samples under plane strain assumption, and to improve handling of boundary noise. The main purpose of this article is to quantify the effect of uncertainty in the boundary conditions in the stochastic setting. To this end, the Metropolis–Hastings Algorithm (MHA) is employed to estimate probability distributions of bulk and shear moduli and boundary condition parameters using IDIC, considering a fiber-reinforced composite sample under plane strain assumption. The performance and robustness of the MHA are compared to two versions of deterministic IDIC method, under artificially introduced random and systematic errors in kinematic boundary conditions. Although MHA is shown to be computationally more expensive and in certain cases less accurate than the recently introduced Boundary-Enriched IDIC, it offers significant advantages, in particular being able to optimize a large number of parameters while obtaining statistical characterization as well as insights into individual parameter relationships. The paper furthermore highlights the benefits of the non-normalized approach to parameter identification with MHA (leading, within deterministic IDIC, to an ill-posed formulation), which significantly improves the robustness in handling the boundary noise.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Solids and Structures
ISSN
0020-7683
e-ISSN
1879-2146
Svazek periodika
2023
Číslo periodika v rámci svazku
280
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
001035354500001
EID výsledku v databázi Scopus
2-s2.0-85163745734