Extended quasicontinuum methodology for highly heterogeneous discrete systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375224" target="_blank" >RIV/68407700:21110/24:00375224 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/nme.7415" target="_blank" >https://doi.org/10.1002/nme.7415</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.7415" target="_blank" >10.1002/nme.7415</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended quasicontinuum methodology for highly heterogeneous discrete systems
Popis výsledku v původním jazyce
Lattice networks are indispensable to study heterogeneous materials such as concrete or rock as well as textiles and woven fabrics. Due to the discrete character of lattices, they quickly become computationally intensive. The QuasiContinuum (QC) Method resolves this challenge by interpolating the displacement of the underlying lattice with a coarser finite element mesh and sampling strategies to accelerate the assembly of the resulting system of governing equations. In lattices with complex heterogeneous microstructures with a high number of randomly shaped inclusions the QC leads to an almost fully-resolved system due to the many interfaces. In the present study the QC Method is expanded with enrichment strategies from the eXtended Finite Element Method (XFEM) to resolve material interfaces using nonconforming meshes. The goal of this contribution is to bridge this gap and improve the computational efficiency of the method. To this end, four different enrichment strategies are compared in terms of their accuracy and convergence behavior. These include the Heaviside, absolute value, modified absolute value and the corrected XFEM enrichment. It is shown that the Heaviside enrichment is the most accurate and straightforward to implement. A first-order interaction based summation rule is applied and adapted for the extended QC for elements intersected by a material interface to complement the Heaviside enrichment. The developed methodology is demonstrated by three numerical examples in comparison with the standard QC and the full solution. The extended QC is also able to predict the results with 5% error compared to the full solution, while employing almost one order of magnitude fewer degrees of freedom than the standard QC and even more compared to the fully-resolved system.
Název v anglickém jazyce
Extended quasicontinuum methodology for highly heterogeneous discrete systems
Popis výsledku anglicky
Lattice networks are indispensable to study heterogeneous materials such as concrete or rock as well as textiles and woven fabrics. Due to the discrete character of lattices, they quickly become computationally intensive. The QuasiContinuum (QC) Method resolves this challenge by interpolating the displacement of the underlying lattice with a coarser finite element mesh and sampling strategies to accelerate the assembly of the resulting system of governing equations. In lattices with complex heterogeneous microstructures with a high number of randomly shaped inclusions the QC leads to an almost fully-resolved system due to the many interfaces. In the present study the QC Method is expanded with enrichment strategies from the eXtended Finite Element Method (XFEM) to resolve material interfaces using nonconforming meshes. The goal of this contribution is to bridge this gap and improve the computational efficiency of the method. To this end, four different enrichment strategies are compared in terms of their accuracy and convergence behavior. These include the Heaviside, absolute value, modified absolute value and the corrected XFEM enrichment. It is shown that the Heaviside enrichment is the most accurate and straightforward to implement. A first-order interaction based summation rule is applied and adapted for the extended QC for elements intersected by a material interface to complement the Heaviside enrichment. The developed methodology is demonstrated by three numerical examples in comparison with the standard QC and the full solution. The extended QC is also able to predict the results with 5% error compared to the full solution, while employing almost one order of magnitude fewer degrees of freedom than the standard QC and even more compared to the fully-resolved system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
125
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
001129503400001
EID výsledku v databázi Scopus
2-s2.0-85180841386