Damage detection on cooling tower shell based on model textures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375251" target="_blank" >RIV/68407700:21110/24:00375251 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/CEJ.2024.01.0007" target="_blank" >https://doi.org/10.14311/CEJ.2024.01.0007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/CEJ.2024.01.0007" target="_blank" >10.14311/CEJ.2024.01.0007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Damage detection on cooling tower shell based on model textures
Popis výsledku v původním jazyce
Ensuring the structural integrity of cooling towers is paramount for safety and efficient operation. This paper presents a novel approach for detecting damage on cooling tower shells, utilising textures derived from laser scanning and close-range photogrammetry. The proposed method delves beyond the limitations of solely relying on colour information by harnessing the rich details embedded in various textures, including diffuse, normal, displacement, and occlusion. The study demonstrates the efficacy of this approach for identifying significant concrete damage. A Convolutional Neural Network (CNN) trained on diffuse textures successfully detects high damage instances with minimal misdetection. However, accurately pinpointing low damage, often manifesting as subtle cracks, and mimicking other patterns like air pores, ribbing, and colour variations, presents a formidable challenge. To tackle this challenge, the authors introduce a novel "composed raster layer" that merges information from multiple textures. This pre-processed layer amplifies the visual cues associated with low damage, facilitating its differentiation from similar patterns. While the current implementation employing multi-resolution segmentation and rule-based classification exhibits promising results, further optimization is acknowledged to refine the accuracy of low damage detection. The successful application of textures commonly used in rendering techniques underscores their remarkable potential for enhancing damage detection in civil engineering applications. While acknowledging limitations such as the analysis of a single cooling tower and the reliance on specific software for damage detection, the study proposes future research directions. This research holds significant implications for the field of civil engineering by offering a promising approach for automated and efficient damage detection on cooling tower shells.
Název v anglickém jazyce
Damage detection on cooling tower shell based on model textures
Popis výsledku anglicky
Ensuring the structural integrity of cooling towers is paramount for safety and efficient operation. This paper presents a novel approach for detecting damage on cooling tower shells, utilising textures derived from laser scanning and close-range photogrammetry. The proposed method delves beyond the limitations of solely relying on colour information by harnessing the rich details embedded in various textures, including diffuse, normal, displacement, and occlusion. The study demonstrates the efficacy of this approach for identifying significant concrete damage. A Convolutional Neural Network (CNN) trained on diffuse textures successfully detects high damage instances with minimal misdetection. However, accurately pinpointing low damage, often manifesting as subtle cracks, and mimicking other patterns like air pores, ribbing, and colour variations, presents a formidable challenge. To tackle this challenge, the authors introduce a novel "composed raster layer" that merges information from multiple textures. This pre-processed layer amplifies the visual cues associated with low damage, facilitating its differentiation from similar patterns. While the current implementation employing multi-resolution segmentation and rule-based classification exhibits promising results, further optimization is acknowledged to refine the accuracy of low damage detection. The successful application of textures commonly used in rendering techniques underscores their remarkable potential for enhancing damage detection in civil engineering applications. While acknowledging limitations such as the analysis of a single cooling tower and the reliance on specific software for damage detection, the study proposes future research directions. This research holds significant implications for the field of civil engineering by offering a promising approach for automated and efficient damage detection on cooling tower shells.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Civil Engineering Journal
ISSN
1210-4027
e-ISSN
1805-2576
Svazek periodika
1
Číslo periodika v rámci svazku
Vol. 33 No. 1 (2024)
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
92-104
Kód UT WoS článku
001217355400007
EID výsledku v databázi Scopus
—