Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Damage detection on cooling tower shell based on model textures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375251" target="_blank" >RIV/68407700:21110/24:00375251 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.14311/CEJ.2024.01.0007" target="_blank" >https://doi.org/10.14311/CEJ.2024.01.0007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/CEJ.2024.01.0007" target="_blank" >10.14311/CEJ.2024.01.0007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Damage detection on cooling tower shell based on model textures

  • Popis výsledku v původním jazyce

    Ensuring the structural integrity of cooling towers is paramount for safety and efficient operation. This paper presents a novel approach for detecting damage on cooling tower shells, utilising textures derived from laser scanning and close-range photogrammetry. The proposed method delves beyond the limitations of solely relying on colour information by harnessing the rich details embedded in various textures, including diffuse, normal, displacement, and occlusion. The study demonstrates the efficacy of this approach for identifying significant concrete damage. A Convolutional Neural Network (CNN) trained on diffuse textures successfully detects high damage instances with minimal misdetection. However, accurately pinpointing low damage, often manifesting as subtle cracks, and mimicking other patterns like air pores, ribbing, and colour variations, presents a formidable challenge. To tackle this challenge, the authors introduce a novel "composed raster layer" that merges information from multiple textures. This pre-processed layer amplifies the visual cues associated with low damage, facilitating its differentiation from similar patterns. While the current implementation employing multi-resolution segmentation and rule-based classification exhibits promising results, further optimization is acknowledged to refine the accuracy of low damage detection. The successful application of textures commonly used in rendering techniques underscores their remarkable potential for enhancing damage detection in civil engineering applications. While acknowledging limitations such as the analysis of a single cooling tower and the reliance on specific software for damage detection, the study proposes future research directions. This research holds significant implications for the field of civil engineering by offering a promising approach for automated and efficient damage detection on cooling tower shells.

  • Název v anglickém jazyce

    Damage detection on cooling tower shell based on model textures

  • Popis výsledku anglicky

    Ensuring the structural integrity of cooling towers is paramount for safety and efficient operation. This paper presents a novel approach for detecting damage on cooling tower shells, utilising textures derived from laser scanning and close-range photogrammetry. The proposed method delves beyond the limitations of solely relying on colour information by harnessing the rich details embedded in various textures, including diffuse, normal, displacement, and occlusion. The study demonstrates the efficacy of this approach for identifying significant concrete damage. A Convolutional Neural Network (CNN) trained on diffuse textures successfully detects high damage instances with minimal misdetection. However, accurately pinpointing low damage, often manifesting as subtle cracks, and mimicking other patterns like air pores, ribbing, and colour variations, presents a formidable challenge. To tackle this challenge, the authors introduce a novel "composed raster layer" that merges information from multiple textures. This pre-processed layer amplifies the visual cues associated with low damage, facilitating its differentiation from similar patterns. While the current implementation employing multi-resolution segmentation and rule-based classification exhibits promising results, further optimization is acknowledged to refine the accuracy of low damage detection. The successful application of textures commonly used in rendering techniques underscores their remarkable potential for enhancing damage detection in civil engineering applications. While acknowledging limitations such as the analysis of a single cooling tower and the reliance on specific software for damage detection, the study proposes future research directions. This research holds significant implications for the field of civil engineering by offering a promising approach for automated and efficient damage detection on cooling tower shells.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    The Civil Engineering Journal

  • ISSN

    1210-4027

  • e-ISSN

    1805-2576

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    Vol. 33 No. 1 (2024)

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    92-104

  • Kód UT WoS článku

    001217355400007

  • EID výsledku v databázi Scopus